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Understanding the continuous exchange of elements among the land, the oceans,

and the atmosphere is one of the big research questions in Earth system science.

Comprehending how these so called biogeochemical cycles function and inter-

act—including their responses to changes in climate and other perturbations—is

crucial for a sustainable future of mankind on planet Earth. To arrive at this under-

standing biotic, biochemical, geochemical and physical aspects have to be taken

into account.

Studies of the carbon cycle are driven by this basic human desire to unravel how

our environment functions and to understand the role of ecosystems in and human

influence on the Earth System. Besides pure curiosity, research in this field is

also stimulated by the realisation that anthropogenic emissions of carbon dioxide

can lead to significant and lasting changes in the climate system (Solomon et al.,

2007).



2 Background and motivation

In the past decades, Earth system science has significantly advanced due to in-

creased availability of observations on various spatial and temporal scales. For

example, the assessment of spatio-temporal ecosystem-atmosphere interaction

has greatly benefited from improved availability of various kinds of Earth observa-

tion data from space. The establishment and expansion of measurement networks

for atmospheric concentrations and ecosystem-atmosphere fluxes of greenhouse

gases has also been crucial for the advancement of scientific understanding.

1.1 Carbon assimilation in terrestrial ecosystems

The overarching topic of this thesis is the quantification of carbon uptake by terres-

trial ecosystems. Before going into the details, let me place carbon uptake in the

conceptual framework of the terrestrial carbon cycle (c.f. Fig. 1.1).

Fig. 1.1: The global carbon cycle for the 1990s, showing the main annual fluxes in GtC

yr—1: pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes in red. Denman

et al. (Reprinted from 2007, (Fig. 7.3)).

As outlined by Canadell et al. (2000), the metabolism of the terrestrial biosphere is

highly complex and subject to variability at all temporal scales (seasonal to decadal

and beyond). The dominant pathway by which carbon enters an ecosystem—and

hence the principal control of carbon input—is photosynthesis, a process that con-

verts carbon dioxide into organic compounds using the energy of light. The total

carbon uptake by plants per unit ground and and time is termed GPP.

About half of it is respired by the plants themselves (Schulze et al., 2005), a compo-

nent flux called autotrophic respiration (Ra). The imbalance of assimilation and res-

piration by living parts of primary producers is called net primary productivity (NPP)

(Chapin III et al., 2009). If NPP is positive, carbon is allocated to an increase in

structural biomass or to the plant’s pool of reserves.
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In natural ecosystems, eventually all parts of the vegetation are decomposed and

mineralised, so carbon dioxide (CO2) returns to the atmosphere via heterotrophic

respiration (Rh). The difference between GPP and total ecosystem respiration

(Reco) is termed net ecosystem productivity (NEP) or—when viewed as input into

the atmosphere—as net ecosystem exchange (NEE = -NEP). The relationships

between the components of ecosystem fluxes can be summarised like this (Luys-

saert et al., 2009):

Reco = Ra +Rh (1.1)

NPP = GPP −Ra (1.2)

NEP = NPP −Rh (1.3)

= GPP −Reco (1.4)

For an ultimate quantification of an ecosystem’s carbon budget—and hence the

ecosystem’s ability to partially offset anthropogenic CO2 emissions—disturbances

such as fire, harvest, soil degradation need to be considered, as well as lateral

fluxes of carbon, besides fluxes of volatile organic compounds (VOCs) and

methane (Chapin et al., 2006).

The terrestrial carbon cycle is tightly coupled to the cycling of other elements and

substances (Lohse et al., 2009), first of all to the hydrologic cycle (Nobel, 2005). A

fundamental trade-off for plants is the evaporative loss of water during CO2 acqui-

sition for photosynthesis. Many approaches to model GPP thus take into account

the limits set by plant water availability.

This study focusses on GPP because it is the largest global CO2-flux and driver of

several ecosystem functions (Beer et al., 2010).

1.2 What determines gross primary productivity?

A major determinant of canopy photosynthesis—and thus GPP—is the amount of

light intercepted by the leaves, i.e. the available energy (Schulze et al., 2005).

Apart from geographic location and season, light interception is influenced by the

angular relationship between leaves and Earth—sun geometry as well as by the

way plants modify their own light climate (Baldocchi and Amthor, 2001).

Further influences on canopy photosynthesis include temperature, wind speed, hu-

midity, availability of soil moisture and nutrients, especially nitrogen, as an essen-

tial component of photosynthetic enzymes (Baldocchi and Amthor, 2001). Along

with the environmental constraints listed above, the specific photosynthetic path-

way of the plant and the life history of the leaves are also important (Schulze et al.,

2005). Furthermore, stress caused by salt, heavy metals, oxygen deficiency or
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herbivory result in reduced photosynthetic capacity. Many of the above factors in-

fluence photosynthetic capacity twofold: by affecting the canopy’s ability to absorb

photochemically active radiation (PAR), and by directly or indirectly changing the

conductivity of the stomates—and thus regulating the influx of CO2 and the efflux

of water vapour, i.e. transpiration.

1.2.1 Mechanistic basis of carbon input into ecosystems

Photosynthesis consists of two types of reactions: light harvesting reactions and

carbon fixing reactions. In most plants they occur at the same time within chloro-

plasts, i.e. organelles within mesophylic cells of green leaves (Chapin et al., 2002).

Upon entering the leaf, visible light can be absorbed by two types of photosyn-

thetic pigments: chlorophylls (a and b) and several carotenoid pigments (e.g. xan-

thophylls, carotenes). Carotenoids pass on the light energy they absorb to the

chlorophylls, until it reaches a reaction center (Robinson, 2001). This absorbed

radiation is transformed into chemical energy in the compounds ATP and NADPH.

The carbon fixing reactions of the Calvin cycle then shift the energy contained

in the temporary products ATP and NADPH into relatively stable sugars that can

be stored, transported and metabolized. The first and rate-limiting step of these

reactions is the attachment CO2 to preexisting carbon skeletons by the enzyme

ribulose-bisphosphate carboxylase-oxygenase (Rubisco), a protein that accounts

for 25% of leaf nitrogen. The availability of CO2 and ATP and NADPH also con-

strains the carbon fixing reactions.

When the oxygen concentration is high relative to CO2 concentration in the chloro-

plasts of C3-plants Rubisco adds oxygen to Ribulose-1,5-bisphosphate (RuBP),

a 5-carbon compound in the Calvin cycle, instead of CO2. This initiates the con-

version of RuBP to CO2, a process called photorespiration that results in a net

carbon loss of 20-40 %. The reason for this ’waste’ is not clear, but it could be a

mechanism of photoprotection (Chapin et al., 2002).

Due to a sudden increase in irradiance or a decrease in photosynthesis at con-

stant irradiance (for example during drought, chilling or other stress factors) plants

absorb energy beyond their current photosynthetic capacity. This excess en-

ergy can be transferred to the omnipresent oxygen, thereby creating reactive oxy-

gen species that can damage cell components including photosynthetic pigments

(Demmig-Adams and Adams, 2006).

Photorespiration provides a supply of reactants (ADP and NADP) to the light re-

action under circumstances in which inadequate supply of CO2 limits the rate at

which these reactants can be regenerated by carbon fixation reactions.

Plants have other lines of defense against excess radiation (Robinson, 2001).

In continuous high-light environments, plants protect themselves by reducing the

amount of energy that gets absorbed. This can be achieved by reducing the total

leaf surface area, by vertical orientation of the leaves and by increasing reflectance
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for example by having waxes or hair on the surface. An internal protective mech-

anism is the dissipation of excess energy as heat. This process involves the xan-

thophyll cycle pigments violaxanthin, antheraxanthin and zeaxanthin, which are all

carotenoids. Under excess light conditions most of the xanthophyll pigments are

de-epoxized into zeaxanthin (Demmig et al., 1987; Demmig-Adams, 1990). This

reaction is favored by the low pH values and the presence of ascorbate, which

can be expected under excess radiation (Robinson, 2001). It has been observed

that increased levels of zeaxanthin go along with increased heat dissipation, al-

though the exact mechanism is still unknown. The de-epoxidation of violaxanthin

and antheraxanthin is reversed under low-light conditions.

1.2.2 Focus: water limitation

1.2.2.1 The importance of water stress

Among the biotic and abiotic constraints of primary productivity listed above, water

availability is especially important on a global scale. Zhao and Running (2010)

found large-scale periodic regional droughts and a general drying trend over the

southern hemisphere to be the cause of a reduction of global terrestrial NPP over

the past 10 years.

From the simple diagnostic model Biome-BGC Nemani et al. (2003) estimated that

water limitation is the most important constraint for vegetation growth on 40% of

Earth’s vegetated surface, while temperature and radiation limit growth over 33%

and 27% of the Earth’s vegetated surface. Beer et al. (2010) corroborate these

results. Their study, too, indicates that water availability is the dominating con-

straint on primary production in over 40% of the vegetated land and in up to 70%

of savannas, shrublands, grasslands, and agricultural areas. The findings of Beer

et al. (2010) imply that the productivity of these ecosystems is highly susceptible

to projected changes of precipitation over the 21st century, whereas tropical and

boreal forests seem more robust.

It is likely that large scale droughts have reduced regional and global primary pro-

ductivity already (Zhao and Running, 2010). Apart from affecting NPP directly,

heat and drought can also cause ecosystem disturbances that result in a release

of carbon to the atmosphere:

• Since climate regulates the amount of dry fuel available for ignition, it has a

significant influence on the spatial and temporal distribution of fire activity. A

study by van der Werf et al. (2008) found that fire activity in arid ecosystems

is constrained by the availability of fuel, which in turn is driven by the amount

of precipitation in the preceding wet season. In wet ecosystems fire occur-

rence seems to depend on the extend of the dry season that determines

the dryness of the fuel. Increased frequencies of large fires will affect for-

est composition and diminish tree densities and thus influence carbon pools

(Westerling et al., 2006).
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• Drought can also lead to higher tree mortality, caused either by carbon star-

vation due to stomatal closure, by cavitation, by limitations of the cellular

metabolism, by a higher susceptibility to pathogens or by a combination of

the above Allen et al. (2010).

1.2.2.2 Global change—increased risk of drought

Global patterns of air temperature and precipitation are changing. The increase

in global temperatures resulting from increasing atmospheric CO2 concentrations

leads to more water vapor in the atmosphere, so changes in precipitation patterns

can be expected (Solomon et al., 2009). The poleward expansion of the Hadley

cells in a warmer climate will lead to a further drying of the already dry subtropics.

According to the 4th Assessment report of the IPCC (Christensen et al., 2007),

a substantial part of the world will be affected by a decrease in precipitation. An

analysis with 22 Atmosphere–Ocean General Circulation Models (AOGCM)s by

(Solomon et al., 2009) identified the following areas that are expected to undergo

reductions in precipitation in the dry season (see also Fig. 1.2): Mexico and South-

Western United States, North Africa and Southern Europe, South Africa, Eastern

South America, West Australia, and Southeast Asia The Mediterranean region,

Central America, and some areas in southern South America, South Africa and

South-West Australia are also likely to experience precipitation reductions in the

wet season and in the annual mean Solomon et al. (2009).

1.3 Measuring productivity

1.3.1 Direct measurement

There are significant uncertainties related to measuring primary productivity di-

rectly, especially below ground (Gower et al., 1999). The largest part of NPP is

allocated to biomass of different plant tissues such as stem and branches, leaves,

coarse and fine roots (Luyssaert et al., 2009). To quantify NPP, biomass changes

of all plant tissues need to be known as well as the amount of biomass lost to

herbivory (Gower et al., 1999). To complete the balance, organic material both lost

and produced between samplings such as root exudates and volatile organic com-

pounds also need to be taken into account (Clark et al., 2001). According to Gower

et al. (1999), biomass increments can be determined in two ways. The first option

is harvesting. This approach is most suitable for ecosystems where the growth is

bigger than the local spatial variability of biomass, e.g. crops, herbaceous ecosys-

tems and tundra. The alternative is to use allometric relationships on permanent

plots. This method involves measuring radial increments of the stems in perma-

nent plots and relating these increments to the growth of all tissues by statistical

relationships. Measuring below ground productivity is costly, laborious and the ac-

curacy is disputed. One problem is due to the difficulties in determining the amount
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Fig. 1.2: Expected decadally averaged changes in the global distribution of precipitation

per degree of warming (percentage of change in precipitation per degree of warming,

relative to 1900—1950 as the baseline period) in the dry season at each grid point, based

upon a suite of 22 AOGCMs for a midrange future scenario (A1B, see Meehl et al.

(2007)). White is used where fewer than 16 of 22 models agree on the sign of the

change. Data are monthly averaged over several broad regions in Inset plots. Red lines

show the best estimate (median) of the changes in these regions, while the red shading

indicates the ±1-Σ likely range (i.e., 2 of 3 chances) across the models. (Figure and

caption are a reproduction of Fig. 3 in Solomon et al., 2009).

and turn-over time of fine roots and mycorrhiza (Trumbore and Gaudinski, 2003).

This fraction constitutes a relatively small part of below ground biomass but, due

to a high turn-over, might contribute much to below-ground primary productivity.

For an overview of measurement methods, their advantages and drawbacks see

(Gower et al., 1999; Majdi et al., 2005; Gaudinski et al., 2010).

1.3.2 Measurement with eddy covariance

Measuring NEP with eddy covariance technique has several advantages over other

methods (Baldocchi, 2003). The method enables us to measure gas and energy

exchange at the right scale, i.e. at ecosystem level, since the longitudinal exten-

sion of the measurement footprint ranges from hundreds of meters to kilometers

(Schmid, 1994). The eddy covariance technique enables direct measurements of
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the net gas exchange over the canopy-atmosphere interface without disturbing the

ecosystem over a wide spectrum of time scales (from hours to years).

Fluxes of CO2, water vapour and other trace gasses as well as heat can be quan-

tified by determining the covariance between fluctuations in vertical velocity (ω)

and concentrations (or mixing ratios) of the gases of interest (Aubinet et al., 2000;

Baldocchi, 2008). Gas concentrations are measured with a fast response infrared

gas analyser at high frequency (10-20 Hz), synchronous to 3-dimensional mea-

surements of wind speed taken by a three-axis sonic anemometer (Aubinet et al.,

2000, 2003b; Papale et al., 2006)

The physical basis for the eddy covariance method is a three-dimensional mass

conservation equation. Baldocchi et al. (1988) state that

“ the time rate of change of the mean mixing ratio (concentration) of

a chemical constituent at a fixed point in space (I) is balanced by the

mean horizontal and vertical advection (II), by the mean horizontal and

vertical divergence or convergence of the turbulent flux (III), by molec-

ular diffusion (D), and by any source or sink (S) ”

δχ

δt
= − u

δχ

δx
− ν

δχ̄

δy
− ω̄

δχ

δz
− δu′x′

x
− δν ′y′

y
− δω′z′

z
+D + S (1.5)

(I) (· · · · · · · · · II · · · · · · · · · ) (· · · · · · · · · III · · · · · · · · · )

χ . . . mixing ratio of a chemical constituent

u, ν, ω . . . streamwise, lateral, and vertical wind velocity components, re-

spectively, that operate in the respective longitudinal (x), lateral

(y), and vertical (z) directions. The mean covariances between

wind velocity components and χ represent turbulent fluxes.

D . . . molecular diffusion

S . . . source/sink term

Overbars denote time averaging and primes (’) denote fluctua-

tions from the mean

Under ideal conditions (horizontally uniform and level surface, enough turbulence,

no significant changes in concentrations during measurement interval) equation

1.5 can be simplified, and the mean vertical turbulent flux under steady state con-

ditions is

F = −ρaω′χ′ (1.6)

where ρa is the density of dry air.

The foundations for this theoretical framework have already been laid in the late

19th century (Reynolds, 1985). However, it was only in the 1990s that commer-

cial anemometers, gas analysers and data storage systems became available to

measure continuously, with sufficient accuracy. The first yearlong study of CO2
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exchange was done by Wofsy et al. (1993). After this, regional networks (e.g. Car-

boEuroflux, AmeriFlux) were established quickly (Aubinet et al., 2000; Valentini

et al., 2000; Running, 1999) and collaborate since 1997 in the FLUXNET project.

At present, more than 500 sites with longterm measurements of CO2, water vapour

fluxes, and many ancillary meteorological, soil and plant variables are organised

in the global network FLUXNET (FLUXNET project, 2010).

The site data combined by FLUXNET are processed according to standard

methodologies including averaging to half-hourly values, filtering for insufficient

friction velocity (u*), partitioning of the net ecosystem exchange flux into produc-

tivity and respiration components as well as filling of gaps caused by interrupted

measurements or quality filtering. Section 2.1 explains these processing steps in

more detail.

1.4 Ecosystem light use efficiency — How is it con-
strained?

The influence of light levels on photosynthesis was not explicitly considered until

the 1950s, in forest ecosystems (Monsi and Saeki, 2005) as well as for crops

(De Wit, 1959). Since the studies by Monteith (1972); Monteith and Moss (1977)

the term LUE, also called radiation use efficiency (RUE) or conversion efficiency,

became a convenient way to summarize how efficiently ecosystems can use light

energy to produce photosynthates at any given time.

LUE is a quotient where the numerator is a measure of production and the de-

nominator quantifies irradiance (Schwalm et al., 2006). However, in the scientific

literature the same name is used to describe slightly different processes on dif-

ferent scales. A study by Grace et al. (2007) notes that some articles express

LUE as mols of CO2 per mols photons of absorbed light, while others express it

in units of energy (in Joules) captured in chemical bonds of photosynthates per

Joule of solar energy absorbed. Some authors deviate from the physical mean-

ing of ’efficiency’ as a unit-less ratio by relating accumulated biomass (which was

comparatively easy to measure in the past) to energy. There are also variations

in the meaning of the denominator: sometimes authors use energy absorbed by

the vegetation, others use incident energy. While some studies refer only to PAR,

others refer to the full solar spectrum.

Carbon and biomass have both been used to describe the carbon dynamics of

ecosystems because the carbon and energy content is relatively constant for or-

ganic matter (Chapin et al., 2002).

1.4.1 How is LUE determined (on a local scale)?

Since LUE is a derived quantity, it cannot be measured directly. It is either quan-

tified as the ratio of a measure of production and a measure of irradiance (see
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above) or by proxy (e.g. certain radiation measurements).

Historically, in crop science radiation use efficiency is a derived quantity based

on accumulated crop mass and absorbed radiation (Monteith, 1972; Monteith and

Moss, 1977; Sinclair and Muchow, 1999).

1.4.2 Constraints of ecosystem light use efficiency

There is considerable scatter in LUE within each vegetation type (Ruimy and

Saugier, 1994; Gower et al., 1999).

A comprehensive review by Garbulsky et al. (2010) lists two main influences on

spatial and longterm variability in LUE:

• Forest age and management practices on annual scale (Landsberg and War-

ing, 1997)

• Nutritional status such as nitrogen availability (Mäkelä et al., 2008; Ollinger

et al., 2008) on local scales, because of the scatter in the data on the rela-

tionship between maximum photosynthetic rate and and foliar nitrogen con-

centrations (Woodward et al., 1995)

Some studies (Turner, 2003; Still et al., 2004) report little evidence for relation-

ships between climatic or biogeochemical controls and spatial variability of LUE.

However, in their meta-analysis Garbulsky et al. (2010) found that the spatial and

long-term variability of LUE is controlled firstly by precipitation, and secondly by

the vegetation type. Annual and maximum LUE has been primarily related to mean

annual precipitation.

The meta-analyis by Garbulsky et al. (2010) concluded that intra-annual variation

of LUE is mainly linked to the energy balance and water availability along the cli-

matic gradient. They also showed that intra-annual variation of LUE is only weakly

influenced by VPD and tem-perature, contrary to what is frequently assumed. For

annual crops a positive relationship between LUE and temperature (Andrade et al.,

1993) and a negative relationship to VPD (Kiniry et al., 1998) has been found. The

LUE of Great Plain grasslands seems to depend on potential evapotranspiration

and precipitation (Polley et al., 2010).LUE of forests has been shown to be posi-

tively related to temperature (Landsberg and Waring, 1997). For other vegetation

types (e.g. shrublands) only few studies exist (Sims et al., 2005; Turner et al.,

2005) and the biophysical controls are not yet well understood.

Apart from LUE, (annual) GPP is also controlled by the leaf area, which is closely

related to faPAR.
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1.5 Estimating primary productivity on regional and
global scales

Terrestrial GPP deserves special attention because it is the largest global carbon

flux (Denman et al., 2007) and drives other ecosystem functions such as respira-

tion and vegetation growth (Ciais et al., 2005; Reichstein et al., 2007).

On the leaf and canopy scale, photosynthesis is quite well understood and can be

easily measured (e.g. Baldocchi and Amthor, 2001), see also section 1.3. On the

regional to global scale, however, there is no way to measure ecosystem gas ex-

change directly. To estimate primary productivity on this scale, one of the following

approaches must be taken (Beer et al., 2010):

(1) Use of local information to build and calibrate process-based, prognostic mod-

els, which can then be applied at global scale,

(2) Data-oriented, so called diagnostic modeling establishes general relationships

between GPP data and sets of descriptive variables at site level. These rela-

tionships are then applied to global spatial fields of the explanatory variables

("upscaling"),

(3) Combination of point measurements of atmospheric CO2 concentrations (flask

samples, or continuous observations on tall towers, or column averaged CO2

concentrations derived from satellite data (Heimann, 2009) or ground based

solar absorption measurements (Macatangay et al., 2008)) with atmospheric

transport models (Rödenbeck et al., 2003; Lauvaux et al., 2009) ("top down"

approach),

(4) Estimation of NPP from biomass inventories (Poorter et al., 1990; Roy and

Saugier, 2001).

These techniques are complementary to each other (Canadell et al., 2000, 2004).

Approach (4) is the most uncertain way to estimate primary productivity (DeLucia

et al., 2007), and mainly mentioned for historic reasons and sake of complete-

ness. Process models are useful tools to check our mechanistic understanding of

ecosystems. Their main purpose is the extrapolation into the future. Data oriented

models are a useful tools to constrain and test these process models (Beer et al.,

2010), as they rely on very few theoretical assumptions. Diagnostic models do not

allow for extrapolations into the future. Their strength is the assessment of the sta-

tus quo and of historic trajectories, depending on the availability of sufficient input

and training data.

1.5.1 Prognostic modelling of gross primary productivity

Prognostic models of primary productivity or other components of the carbon bal-

ance are not a subject of this thesis.
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1.5.2 Diagnostic modelling of gross primary productivity—Overview

Diagnostic models of GPP relate site level measurements of GPP to a set of ex-

planatory variables, e.g. meteorology, vegetation type, remotely sensed vegetation

indices (Beer et al., 2010) at daily, monthly or annual time scales. Examples are

given in Table 1.1.

Tab. 1.1: Categories of diagnostic GPP (after Beer et al., 2010)

Type of model short description References

LUE approach GPP is the product of LUE and aPAR; LUE is a

function of a maximum LUE and certain

environmental constraints

Monteith (1972);

Running et al.

(2000)

water use

efficiency (WUE)

approach

GPP of whole river catchments, combines

recently derived global WUE fields with

long-term averaged evapotranspiration at the

watershed scale

Beer et al. (2007,

2009)

Koeppen-Geiger

cross biome

(KGB) approach

Look-up table of mean GPP per climate class

and biome type Beer et al. (2010)

MIAMI model relates primary productivity to mean annual

temperature and precipitation Lieth and

Whittaker (1975);

Beer et al. (2010)

machine learning techniques

artificial neural

networks (ANN)

prediction of GPP by an empirical model in

which the weights associated to the nodes of

the model are determined in a training process

(by back-propagation of the error in the output)

Papale and

Valentini (2003)

model tree

ensemble (MTE)

prediction of GPP by a set of multiple linear

regressions from explanatory variables (faPAR,

faPAR× potential radiation, precipitation,

temperature)

Jung et al. (2009)

Developing and using different flavors of models ultimately leads to more robust

estimates of primary productivity (Beer et al., 2010). Each type of diagnostic mod-

eling is associated with uncertainty—propagated from the input data but also due

to the representativity of the model structure. Comparing and combining results

from diverse approaches helps to understand how big these uncertainties are.

Terrestrial models of photosynthetic uptake that use LUE as an input (Haxeltine

and Prentice, 1996; Ruimy et al., 1999) deserve special attention because of sev-

eral promising options to improve them by deriving LUE directly from remotely

sensed data.

1.5.3 LUE models of primary productivity—focus on MOD17

A number of GPP models set a maximum (or potential) LUE as a constant and

downregulate it by minimum temperature and one or several estimators of water
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stress (Potter et al., 1999; Running et al., 2004; Yuan et al., 2007; Mäkelä et al.,

2008). The way in which the maximum LUE and the coefficients accounting for

stress effects are set differs between models. The maximum LUE is often set

as a constant across sites and biomes or it is defined for each vegetation type.

Assuming maximum LUE to be constant for different locations within one biome

is an oversimplification possibly causing the poor performance of global models of

GPP (Heinsch et al., 2006).

A frequently chosen indicator of water stress is VPD (Granger and Gray, 1989;

Running and Nemani, 1988), also in LUE-based models of photosynthetic uptake.

This practice is supported by several studies that suggest atmospheric conditions

reflect surface parameters (Bouchet, 1963; Morton, 1983). In certain places (most

of China, conterminous U.S.) VPD has been shown to capture the interannual

variability of water stress, though it may fail to capture the full seasonal water

stress in dry regions experiencing strong summer monsoons (Mu et al., 2007a,b).

This study uses the MOD17 model of primary productivity as an example because

it is used operationally to produce global datasets of GPP and NPP, products

that are freely and easily accessible in near-real time since March 2000 (http:
//modis.gsfc.nasa.gov/data) and are thus rather influential.

1.5.3.1 Algorithm of the MOD17 model of primary productivity

The MOD17 model of primary productivity is a classic example of a LUE model (c.f.

section 1.5.3). A maximum LUE is reduced by simple ramp functions of daily Tmin

and VPD (see Fig. 1.3). The resulting actual LUE is multiplied by the available

energy (Heinsch et al., 2003):

LUE = LUEmax ∗ f(Tmin) ∗ f(V PD) (1.7)

GPP = LUE ∗ aPAR (1.8)

= LUE ∗ faPAR ∗ PAR (1.9)

A minimum temperature scalar (Tmin) reduces the conversion efficiency when cold

temperatures limit plant function (Heinsch et al., 2003, 2006). Another scalar re-

duces LUE when VPD increases beyond a threshold (VPDmin) that is considered

high enough to limit photosynthesis. The effect of soil water availability on pho-

tosynthetic assimilation is not included in the MOD17 algorithm (Heinsch et al.,

2006). To partially account for this issue, sensitivity to VPD is increased in the

model as a surrogate for drought effects (McCallum et al., 2009).

Both scalars range from 1 (implicating no inhibition of photosynthesis by environ-

mental conditions) to 0 (total inhibition). The five parameters of the model (LUEmax,

Tminmin, Tminmax, VPDmin, VPDmax) have been defined for 11 biome types and

are stored in a biome property look-up table (BPLUT) (c.f. Table A.1). The algo-
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Fig. 1.3: The MOD17 Tmin and VPD attenuation scalars are simple linear ramp functions

of daily Tmin and VPD. Adapted from Heinsch et al. (2003).

rithm used to map these 11 biome types employs the University of Maryland (UMD)

classification scheme (Hansen et al., 2000; Heinsch et al., 2003). The BPLUT has

originally been parameterised using a global simulation of the general ecosystem

model BIOME-BGC (Running et al., 2000; Zhao et al., 2005) and was later on ad-

justed using updated meteorological and faPAR data compared to data from 12

North American FLUXNET sites (Zhao et al., 2005; Heinsch et al., 2006).

A second product of the MOD17 algorithm is NPP. Daily maintenance and growth

respiration are estimated using biome-specific allometric relationships based on

leaf area index (LAI) and faPAR and subsequently subtracted from GPP (Heinsch

et al., 2003). However, the final NPP-product is only available at annual timescale

(Running et al., 2000).

In the following, only GPP is considered because it is available at a daily resolution

from the NASA data portal and—given the availability of suitable input data—it can

be calculated at even higher temporal resolution.

1.5.3.2 Operational input into the MOD17 GPP model

There are three sources of input into the MOD17 model: land cover and faPAR

data (both are derived at 1 km spatial resolution from the MODIS sensors), and

meteorological data.

Biome type information originates from two MODIS land cover classification

schemes (Heinsch et al., 2006). Besides the UMD land cover classification (i.e.

land cover classification type 2 of the MOD12Q1 product) used by the core MOD17

algorithm (Hansen et al., 2000), the MOD15 algorithm for deriving LAI and faPAR

relies on the land cover classification type 3 (LAI/fPAR biome scheme) with 6 biome

types (Myneni et al., 2002).

Apart from the land cover classification that defines the basic vegetation archi-

tecture and characteristics, MOD15 algorithm inputs include atmospherically cor-

rected bidirectional reflectance values in a red and and a near-infrared spectral
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band, as well as the sun and viewing geometry for the reflectance data (Huemm-

rich et al., 2005).

The faPAR retrievals are performed by comparing observed and modeled surface

directional reflectances for a suite of canopy structures and soil patterns that cov-

ers a range of expected natural conditions (Myneni et al., 2002; King et al., 2004).

The resulting probability distributions are then checked for energy conservation,

which limits the number of acceptable solutions (Myneni et al., 2002). If no accept-

able solutions were found, a backup algorithm derives faPAR as biome-specific

linear functions of normalised difference vegetation index (NDVI). For each day,

faPAR is calculated as the mean of all possible solutions for a given pixel (Huemm-

rich et al., 2005). The final product reports the maximum clear-sky daily value of

an 8 day aggregation period (Plummer, 2006).

Meteorological data are provided by the NASA Global Modeling and Assimilation

Office (GMAO) (used to be Data Assimilation Office (DAO)) at a resolution of 1◦ x

1.25◦ and 3 h (Heinsch et al., 2003; Zhao et al., 2005). These data are generated

by the Goddard EOS Data Assimilation System (GEOS-DAS) based on general

circulation model outputs, boundary conditions (sea surface temperature, terrain,

etc.) and surface observations to form a regular gridded meteorological data set

(Zhao et al., 2005; Bloom et al., 2005; Atlas and Lucchesi, 2000). From these

original data, the the current version of the MOD17 algorithm (collection 5) derives

average daily VPD, daily minimum temperature Tmin and total shortwave radiation

and interpolates them to the 1 km resolution of the MODIS pixels.

1.5.3.3 Assessment of the MOD17 model

There is general agreement that the MODIS algorithm captures the seasonality

of site GPP quite well across a wide array of climates under non-drought condi-

tions (Plummer, 2006). However, the MOD17 GPP product does have a number

of weaknesses caused by the choice of input data (meteorologic, radiometric, bio-

physical), model parameterization and the algorithm itself (Plummer, 2006; Hein-

sch et al., 2006).

Uncertainties propagated from input data

The classification accuracy of the MOD12Q1 land cover product, which is reported

to be 65-80% (Cohen et al., 2003), influences the MOD17 GPP twofold: through

the biome-specific model parameters and indirectly through the MODIS faPAR

algorithm. During land cover classification, most problems occur while trying to

differentiate between different forest classes. According to (Plummer, 2006), pa-

rameter differences between forest classes are small, thus the net effect is small.

However, validation of remote-sensing-based biophysical products is complicated

by a underrepresentation of validation sites with grass and evergreen broad leaves

(Baret et al., 2006).
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The representativeness of the MOD15 fraction of absorbed photosynthetically

active radiation (faPAR) is not clear. Plummer (2006) states that the ”use of

the maximum eight-day absorption may undervalue the impact of this canopy

structure (Heinsch et al., 2006; Ritts et al., 2006; Leuning et al., 2005). In addition,

it is unclear whether the maximum is truly representative of the situation over eight

days due to variation in atmospheric conditions and cloud”.

The coarse resolution of the assimilated meteorology can result in site specific

mismatches (Turner et al., 2005). As long as there is no accurate reanalysis prod-

uct available with a higher spatial resolution, this problem cannot be overcome on

a global scale. Collection 6 of the MOD17 product will be fed by a more recent

version of GMAO data with higher spatial resolution (MODIS Land Team, 2009;

Rienecker et al., 2008).

Problems resulting from model structure

While global models, especially if they are to be operated in near-real time, need to

be simple (Heinsch et al., 2003), the appropriateness of the MOD17 model struc-

ture for certain conditions has been questioned. Most of all, the performance of

MOD17 in drought conditions is criticised (Turner et al., 2005; Leuning et al., 2005;

Plummer, 2006; Hwang et al., 2008). The inclusion of a parameter describing soil

water availability in stead of or in addition to the VPD control in the photosynthesis

model was suggested (Reichstein et al., 2004), and a better representation of GPP

has indeed been demonstrated in site-level studies (Leuning et al., 2005; Kanniah

et al., 2009a). However, an accurate proxy of plant available soil water content

does not yet seem to exist on a global scale. Soil moisture estimates derived from

microwave remote sensing are only available for the uppermost centimeters and

especially uncertain in densely vegetated areas. Proxies based on a ratio of pre-

cipitation and evapotranspiration (Leuning et al., 2005)are not readily applicable

on a global scale, because global precipitation data, either from reanalysis (Ruiz-

Barradas and Nigam, 2005) or from remote sensing, are not yet considered reliable

enough.

There is also concern that assuming a constant LUEmax for each land cover class

is an oversimplification (Turner et al., 2005; Leuning et al., 2005). During cloudy

conditions, when radiation is more uniformly distributed, i.e mostly diffuse, LUE is

known to be higher compared to cloud-free days (Knohl and Baldocchi, 2008). LUE

also changes seasonally due to changes in leaf pigment content (Turner, 2003).

Same-biome variability of LUE as well as mixing of different classes within one

pixel are additional sources of error (Plummer, 2006).
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1.6 Estimating light use efficiency from space

Many problems of the LUE-based models of photosynthetic assimilation discussed

in section 1.5.3.3 would become irrelevant if actual LUE could be derived from

remotely sensed data with reasonable uncertainty. The two most promising buz-

zwords for a direct, remote estimation of LUE are chlorophyll fluoresence and PRI.

Both are based on the fact that light energy, after having being passed to reac-

tion center chlorophylls (see section 1.2.1), is utilized by one of three competitive

processes (Robinson, 2001):

• assimilatory and nonassimilatory photochemistry (photochemical quench-

ing),

• dissipation as heat (nonphotochemical quenching, photoprotection), see sec-

tion 1.2.1

• dissipation as chlorophyll fluorescence (re-emission of light at longer wave-

length than the excitation energy).

Since the energy balance between light harvesting and photosynthetic use plus

dissipation must be kept, quantification of the dissipation processes allows infer-

ence about photosynthesis.

1.6.1 Estimating LUE with fluorescence measurements

The competition of fluorescence with photosynthesis for the use of absorbed light

energy has enabled generations of plant physiologists to use it as a tool for assess-

ing the vitality of the photosynthetic system (Papageorgiou and Govindjee, 2005;

Baker, 2008; Meroni et al., 2009b).

The chlorophyll in leaves has a fluorescence emission spectrum in the waveband

between 650 and 800 nm, peaking at ca. 690 nm and 740 nm (Grace et al., 2007).

In field or laboratory assessments of plant stress is often inferred from changes in

fluorescence during several minutes following artificial illumination (active fluores-

cence). These saturating light pulses are impractical at the canopy scale (Rascher

and Pieruschka, 2008), therefore LASER-induced spot or scanning methods are

being tested (Kolber et al., 1998, 2005; Ananyev et al., 2005; Rascher and Pier-

uschka, 2008)

Alternatively, the ’passive’ fluorescence triggered by sunlight can be used as an

indicator for LUE (Flexas et al., 2002). The radiation emitted as fluorescence is

added as a weak signal to the reflected solar radiation (Meroni et al., 2009b). This

solar-induced fluorescence is 2-3% or less of the reflectance signal (Grace et al.,

2007). This implies that great care must be taken to separate the two signals. One

strategy to achieve this involves measuring the emitted radiation in ’dark lines’ of

the solar spectrum. Little incident energy and thus little reflected radiation in these

spectral wavebands increases the relative contribution of fluorescence. Several



18 Background and motivation

of those ’dark lines’ result from absorption in the sun’s atmosphere (Frauenhofer

lines). These features are numerous, but only one coincides with the fluorescence

emission spectrum (Grace et al., 2007): the Hα feature centered at 656.4 nm. They

are also very narrow (0.04-0.4 nm), so a high spectral resolution is necessary to

use these features for fluorescence measurements. Wider absorption features

result from absorption by gasses in the Earth’s atmosphere, most notably the O2-B

(687.0 nm) and O2-A (760.4 nm) absorption bands. These absorption lines can

be easily used for ground-based measurements. Measuring within these telluric

absorption bands using air-borne or space-borne sensors requires a very accurate

atmospheric correction, since absorption acts two-way: both incident and outgoing

radiation are affected (Davidson, Malcolm et al., 2003; Guanter et al., 2007).

In their review on remote sensing of sun-induced chlorophyll fluorescence Meroni

et al. (2009b) conclude "that today ground-based estimation of [fluorescence] can

be achieved by several commercially available field spectrometers while there is

still a need for technical development in airborne and spaceborne sensors to better

fit the spectral requirements for precise [fluorescence] retrieval".

Before satellite-based fluorescence measurements can be used to estimate GPP

for large regions, several issues need to be addressed (Damm et al., 2010):

• Atmospheric effects must be corrected precisely (Guanter et al., 2007).

• The influence of canopy structure on the fluorescence signal must be better

understood.

• The contribution of different surface elements to one measurement by the

remote fluorescence sensor (i.e. mixed pixel effects) needs to be considered.

• The impact of changing sun-sensor geometry on the fluorescence signal

(Meroni et al., 2008) requires further studies.

• The understanding of physiological relationship between fluorescence and

photosynthesis needs to be developed further.

1.6.2 photochemical reflectance index (PRI) as proxy for LUE

Physiological background & formulation of PRI

The changes in pigment composition induced by the photo-protective mechanism

of xanthophyll-de-epoxidation (c.f. section 1.2.1) result in a change of reflectance

near 531 nm (Bilger et al., 1989; Gamon et al., 1992, 1997; Peñuelas et al., 1995,

c.f. Fig. 1.4). Gamon et al. (1993a) found this reflectance change at approximately

531 nm in 20 species representing a wide range of habitats, phenologies and pho-

tosynthetic pathways. The exact spectral position might vary depending on the

relative contribution of the component caused by xanthophyll pigment interconver-

sion and a component caused by chloroplast conformational changes.
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Fig. 1.4: A) Difference in reflectance as a function of stress level; T0: Unstressed

sunflower leaves at time zero; T1: light-stressed leaves after 40 minutes B) Observed

change in leaf reflectance. Adapted from Gamon et al. (1990); Hall et al. (2008).

Normalising reflectance at this wavelength (R531) by reflectance at a reference

wavelength (Rref ) helps to correct for changes in ’background’ reflectance that

might be caused by a number of optical effects, including changes in illumination

angle and chloroplast movements (Gamon et al., 1993a, , see also the change in

’background reflectance for Zea sp. in Fig. 1.5):

PRIref =
R531 −Rref

R531 +Rref
(1.10)

Gamon et al. (1993a) suggest 570 nm as an optimal reference wavelength at

leaf level because it is situated near the right shoulder of the xanthophyll-de-

epoxidation reflectance feature. The suitability of this (R570) and other reference

bands have been tested based on statistical correlations (e.g. Gamon et al., 1992;

Inoue et al., 2008). The scientific literature does not agree on a single best refer-

ence wavelength for PRI, which makes cross-study comparisons difficult (Garbul-

sky et al., 2011). Garbulsky et al. (2011) summarise that "it is not entirely clear if

the best wavelengths for measuring this feature at the leaf scale (531 and 570 nm)

are necessarily the best wavelengths at progressively larger scales, where multi-

ple scattering and other confounding effects may alter the spectral response of the

xanthophyll cycle feature, much in the way that pigment absorption peaks can vary

depending upon their chemical and scattering medium."

More work is needed to determine a PRI-formulation that can be applied on large

areas based remote sensing data.

Successful studies of PRI as indicator of photosynthetic efficiency

PRI has been effective in detecting changes in photosynthetic efficiency in single

leaves (Peñuelas et al., 1995; Gamon et al., 1997; Méthy, 2000; Guo and Trotter,

2004) and in small canopies of sunflower (Gamon et al., 1992), barley (Filella et al.,

1996), chaparral (Stylinski et al., 2002) and other species (Trotter et al., 2002) as
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Fig. 1.5: Reflectance changes as a function of wavelength 10 minutes after sudden high

light exposure of dark-adapted leaves representing three photosynthetic pathways (C3,

C4, CAM). Reflectance has been normalised to reflectance at time zero. Each spectrum

represents the mean of measurements on three leaves. Adapted from Gamon et al.

(1993a).

well as at the ecosystem scale (Peñuelas and Inoue, 2000; Rahman et al., 2001;

Nichol et al., 2000, 2002).

By tracking the xanthophyll de-epoxidation state and thus LUE, PRI becomes com-

plementary to spectral indices such as normalised difference vegetation index

(NDVI) and enhanced vegetation index (EVI) that are good indicators of canopy

greenness but are no proxy of fluctuations in photosynthetic activity unrelated to

changes of greenness and leaf area (Running and Nemani, 1988; Gamon et al.,

1993b; Asner et al., 2004).

In particular, PRI has been successfully applied in detecting changes of photosyn-

thetic activity caused by water stress (Tambussi et al., 2002; Thenot et al., 2002;

Asner et al., 2004; Sun et al., 2008; Suárez et al., 2008; Peguero-Pina et al., 2008;

Suárez et al., 2010), ozone-induced stress (Meroni et al., 2009a; Panigada et al.,

2009), salinity stress (Naumann et al., 2008a,b), as well as nutrient enrichment

and eutrophication (Siciliano et al., 2008).

Challenges

In some studies at canopy and ecosystem level no statistically significant corre-

lation between PRI and LUE was observed (Méthy, 2000). These difficulties to

upscale the PRI-LUE-relationship have several roots. One issue are the differ-

ent footprints of the PRI-sensor and the set-up used for assessing ecosystem

LUE—usually an eddy covariance tower (Méthy, 2000). Often this spatial mis-

match goes along with a temporal mismatch: while the PRI measurements are

instantaneous, the eddy covariance technique averages measurements over half-

hourly intervals. Observing different subsets of the land surface with the two meth-

ods has a 3-dimensional, structural aspect. While eddy covariance flux measure-

ments integrate vertically over the footprint, any type of PRI sensor only records
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what is in its ’line of sight’, including some scattered photons. It does not ’see’ pho-

tosynthetically active surface obstructed by leaves and branches. A discrepancy

between the two measurement methods is unavoidable as soon as the relative

contributions of plant materials with different LUEs to the overall signal recorded

the PRI-sensor differs from the proportions within the flux-tower footprint. Pho-

tosynthetic efficiency is known to vary between species (Guo and Trotter, 2004),

between shaded and sunlit leaves of the same species (Peñuelas et al., 1995) and

with age. In addition, the PRI is influenced by the contribution of photosyntheti-

cally inactive plant material and soil to the reflectance signal. Especially for sparse

canopies with LAI <3, variations in soil background reflectance strongly influence

the PRI signal (Barton and North, 2001; Filella et al., 2004).

An emergent property at the canopy level is that LUE increases on cloudy days,

even if the total incident energy decreases to 70-80% of the value on a clear day

(Gu et al., 1999). This property arises from the saturation of leaf photosynthesis

at a certain illumination intensity. On cloudy days, the fraction of diffuse light in-

creases: light does not arrive as a beam from only one direction, but from many

directions. Hence a large number of leaves receive a moderate amount of light

which can result in a larger overall LUE compared to cloud-free days on which only

the top leaves are illuminated (often beyond their photosynthetic capacity) while a

large fraction of leaves remains in deep shade (Gu, 2002; Farquhar and Roderick,

2003).

The limitations imposed by the inherent heterogeneity of ecosystems additionally

affect radiation measurements when the position of sensor and/ or the sun rel-

ative to the land surface changes in between acquisitions (Louis et al., 2005).

Apart from these effects of viewing and illumination geometry—often summarized

as the bidirectional reflectance distribution function (BRDF)-effect on PRI (Suárez

et al., 2008)—the ecosystem itself changes diurnally and seasonally. Leaves might

change their orientation and leaf area varies—differently for different species within

an ecosystem (Barton and North, 2001; Hilker et al., 2008b).

Also, the total pool of photosynthetic pigments and the relative contributions of

carotenoids and chlorophylls to it vary; these changes show up in PRI measured

over seasons or years (Stylinski et al., 2002; Sims and Gamon, 2002; Filella et al.,

2009).

The PRIs sensitivity to carotenoid/ chlorophyll ration actually seems to be an ad-

vantage for tracking ecosystem LUE (Filella et al., 2009). Carotenoid pigments

other then xanthophylls, for example b-carotene or lutein, are also involved in pho-

toprotective processes (Frank and Brudvig, 2004; Telfer, 2005; Dall’Osto et al.,

2006).

Under stress or during leaf senescence—while photosynthetic efficiency de-

creases—chlorophyll degrades faster than carotenoids (Gitelson and Merzlyak,

1994; Peñuelas et al., 1995). Therefore, environmental stress often increases the

carotenoid/chlorophyll ratio, which correlates with PRI.

Based on these considerations, Filella et al. (2009) conclude that PRI "may provide
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an integrated remote sensing assessment of photoprotective and accessory pig-

ments and, therefore, of photosynthetic radiation-use efficiency to the extent that

this is correlated with carotenoid/chlorophyll ratio." They found that "over the long

term (weeks), PRI tracked the variations in the carotenoids/chlorophyll-a+b ratio

and, over the short term (minutes), the changes in the de-epoxidation state."

PRI from space-borne sensors

While there have been several successful studies with air-borne PRI-sensors (e.g.

Nichol et al., 2000, 2002; Asner et al., 2004, 2005), only few studies have at-

tempted an investigation of the PRI-LUE relationship with satellite data so far. Lim-

iting factors are probably the number of space-borne sensors with the necessary

narrow spectral bands, the pre-processing required for PRI calculation (correction

for atmospheric disturbances and BRDF effects) and other challenges detailed

above. However, some studies on boreal, temperate, and Mediterranean type

ecosystems have successfully tested MODIS-derived PRI as a proxy for ecosys-

tem LUE (Drolet et al., 2005, 2008; Rahman et al., 2004; Garbulsky et al., 2008;

Xie et al., 2009).

MODIS seems to be the most appropriate sensor currently available to test space-

borne PRI because one of its 10 nm wide "ocean bands" is centred at 531 nm.

The not too narrow spectral bands might actually be an advantage, given that

Gamon et al. (1992, 1993a) found that the optimum wavelength for LUE tracking

varies in between species and canopy types. The temporal resolution of MODIS

data is comparatively high. Since both the Terra and the Aqua satellites have a

roughly identical MODIS sensor aboard, two or more data acquisitions per day can

take place under cloud free conditions. The MODIS observation footprint for the

required spectral bands is about 1 km2 if the sensor view zenith angle is limited to

no more than 40◦ (Wolfe et al., 1998). This is in the same order of magnitude as the

footprint of eddy covariance towers, although the fetch of eddy covariance systems

depends on measurement height, the surface roughness, and the characteristics

of the boundary layer as well as the atmospheric stability (Rebmann et al., 2005).

We can assume comparable conditions in the remotely sensed area and the flux

tower source area when restricting the analysis to towers located in a large enough

homogeneous area. Hence, for some carefully selected eddy covariance sites a

comparison to ground based estimates of light use efficiency is possible. At a

homogeneous site the results will not be compromised if some of the 1 km MODIS

pixel are not properly centered on the eddy covariance tower and do only partially

coincide with the flux-tower footprint area.

The quality flags associated with every MODIS pixel allow for screening accord-

ing to cloud cover and the general usefulness of the data. Given an ideally ho-

mogeneous study site the following issues need to be taken into account when

interpreting PRI values in 1 km MODIS pixels:

1. The sensor lacks a spectral band at 570 nm (c.f. Table 1.2), hence another
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reference band needs to be chosen.

2. Changes in viewing and illumination geometry in between measurements are

likely to influence PRI (Barton and North, 2001).

3. A stringent atmospheric correction should be performed in order to avoid

variations simply due to differences in atmospheric composition (Grace et al.,

2007).

4. In addition to these difficulties, studies at a regional scale (or larger) would

ultimately need to deal with sub-pixel heterogeneity.

Tab. 1.2: Bandwidth of the MODIS’ spectral bands used in this study.

Band Bandwidth (nm) Use in this study

1 620-670 PRI, NDVI, EVI

2 841-876 NDVI, EVI

3 459-479 EVI

4 545-565 PRI

11 526-536 PRI

12 546-556 PRI

13 662-672 PRI

14 673-683 PRI

Hardly any space-borne LUE estimation has been undertaken so far for more wa-

ter limited ecosystems. Garbulsky et al. (2008) estimated LUE for an evergreen

Mediterranean oak forest in Castelporziano, Italy. However, the trees there do

have access to groundwater (Damm et al., 2002), thus water limitation is not se-

vere. It is important to bridge this gap because the area affected by drought is

about to increase: According to Christensen et al. (2007), it is likely that annual

precipitation will decrease in several regions, among them Central Europe, the

Mediterranean, the south-western US, Central America and Southern Australia

(c.f. section 1.2.2.2). For the Mediterranean this goes along with an increased

risk of summer drought (Giorgi, 2006). It is crucial to improve the performance of

diagnostic models with respect to drought events. Upgraded data-oriented models

can then serve as benchmarks to improve current process models.

It is crucial to find out if spaceborne PRI can help to improve assessments of

carbon uptake for many of the world’s ecosystems.

1.7 Aims of this study

To improve MOD17-type-models of gross primary productivity it is attractive to de-

rive LUE directly from just one kind of satellite data, without relying on estimates of

different meteorological variables. This study will help to find out if photochemical

reflectance index (PRI) can function as a proxy of LUE in global models.
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This study will be based on radiances recorded by the MODIS on board the Terra

and Aqua satellites because this configuration provides a useful temporal reso-

lution and a spectral band around 531 nm. However, MODIS does not have the

usual PRI reference band at 570 nm. Thus, the MODIS PRI needs to be based on

several alternative reference bands. One goal of this study is to identify the most

suitable among all possible reference bands, first of all for a test site.

Changes of LUE in drought-tolerant evergreen species are often not paralleled

by changes in NDVI,LAI or canopy structure (Gamon et al., 1992; Running and

Nemani, 1988).

Due to negligible changes in radiation interception in these Mediterranean ever-

green fortests, it is of great importance to have accurate measurements of short-

term changes in radiation-use efficiency (Filella et al., 2009). Thus sclerophyll

dominated ecosystems are a good starting point for testing the performance of

satellite-based PRI as LUE proxy. A pilot study within this thesis will therefore con-

centrate on a Mediterranean Quercus ilex forest. Special emphasis will be placed

on the capability of satellite-based PRI to estimate LUE during drought events

because this is where current diagnostic models of GPP have deficiencies. Specif-

ically, it will be assessed which reference band is most suitable for this application.

The influence of different methods of atmospheric correction on the PRI-LUE rela-

tionship will also be tested in this pilot study. Though, for reasons detailed above,

a relationship between LUE and NDVI or enhanced vegetation index (EVI) is not

expected for this ecosystem, these indices are included in the analysis as bench-

marks.

Despite the fluctuations in illumination geometry, dimension of the surface area

sensed by each instantaneous field-of-view and background reflectance at every

site, the site level models based on MODIS PRI published so far yielded good

agreement with observed LUE. That considerable potential exists for mapping

LUE with a common model has also been shown by Drolet et al. (2008), who

found a unifying model for eight sites in central Saskatchewan. These boreal sites

are close to each other (within the confines of one satellite scene), hence they can

be simultaneously monitored instead of by comparing data from different image

acquisitions. The viewing geometry and atmospheric disturbance of the satellite

signal is therefore similar. Consequentially, the next step is to evaluate PRI based

models across sites and satellite scenes.

Therefore, in a second stage following the pilot study on the Mediterranean holm

oak forest, the analysis will be expanded from one ecosystem to sites representing

a diversity of plant functional types and different vegetation densities. The objective

of this study is to discover if the known limitations of PRI can be overcome and a

single PRI-based model of LUE (i.e. based on the same reference band, with the

same parameterisation) can be applied under a wide range of conditions. So far

it is unclear if—using satellite data with rather coarse spatial resolution—the same

empirical model can be applied at multiple sites or if different reference bands have

to be used depending on for example plant functional type and vegetation density.
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A secondary objective of this study is to learn how different frequently used faPAR

products affect the in-situ LUE estimates that are used as ground truth.
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The main types of data used in this study are local eddy covariance measurements

(plus associated meteorological variables) and MODIS satellite data, which are

available globally. The relationship of MODIS-PRI to LUE is tested at site level. If

a universally applicable relationship between MODIS-PRI and LUE can be found,

this would provide an opportunity to upscale LUE to larger areas.

2.1 Flux data from eddy covariance measurements

2.1.1 Processing of flux measurements according to FLUXNET stan-
dards

For this study, flux and micro-meteorological data were extracted from the

FLUXNET LaThuile database (http://www.fluxdata.org/DataInfo/default.aspx). The

data of that data base were recorded at 253 individual research sites encompass-

ing 7 climate types and 11 plant functional types, following network-specific proto-

cols (Aubinet et al., 2000).

The assumptions on which the simplified equation 1.6 in section 1.3.2 is based are

often not fulfilled. Horizontal turbulent transport and advection do occur, advection,

for example, results from patchy vegetation or uneven terrain (Lee, 1998; Finnigan
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et al., 2003; Finnigan, 2008). There is no technique available to correct fully for

advection effects. However, some first-order corrections can be made for moder-

ate effects of topography. These corrections aim to re-align a coordinate system

in a way that the mean vertical flux that is zero so that hence equation 1.6 can be

applied again (Baldocchi et al., 1988; McMillen, 1988; Baldocchi, 2008). Several

different techniques are available and can be chosen according to the particulari-

ties of the measurement footprint (Finnigan et al., 2003; Finnigan, 2004). In some

cases this correction is not sufficient and the magnitude of the bias due to advec-

tion remains unknown unless measured (Feigenwinter et al., 2008; Yi et al., 2008).

However, measuring advection directly is difficult, because it involves multiple sets

of eddy covariance towers to measure flux divergence or horizontal gradients in

fluxes and scalars (Aubinet et al., 2003a; Feigenwinter et al., 2004).

Another correction needs to be introduced to avoid that the flux measurements are

biased by insufficient turbulent mixing, which is measured as friction velocity (u*)

(Goulden et al., 1996; Aubinet et al., 2000; Barford et al., 2001; Gu et al., 2005). At

nighttime, the atmospheres thermal stratification stabilises. This can cause an iso-

lation of the air around the vegetation from the air moving in the atmosphere above

(Baldocchi, 2008). Under these circumstances, the CO2 fluxes measured by the

eddy covariance system would not represent the gas exchange of the ecosystem

(Aubinet et al., 2005; Sun et al., 2007). The u* threshold for this decoupling ranges

between 0.1 and 0.5 m s−1, depending on topography and canopy height (Aubi-

net et al., 2000; Loescher et al., 2006). To correct the data for advective transport

measurements acquired at low-turbulence conditions are discarded (u* filtering)

(Aubinet et al., 2005).

To validate and calibrate ecosystem models it is necessary to partition the mea-

sured net ecosystem exchange (NEE) into its gross primary productivity (GPP)

and total ecosystem respiration (Reco) components. The flux partitioning is essen-

tially an extrapolation of Reco data from night- to day-time, based on short-term

relationships between temperature and Reco (Reichstein et al., 2005). Using short-

term sensitivities instead of long-term dependencies reduces the influence of other

confounding factors, such as soil moisture or growth dynamics. The daytime Reco

resulting from this extrapolation is subsequently subtracted from NEE to calculate

GPP. The validity of this flux separation has been corroborated by a new method

using a light response curve approach, independent of night-time data (Lasslop

et al., 2010).

To come up with long, uninterrupted series of flux data for creating carbon budgets

on daily, weekly, monthly or yearly time steps, gap filling is an essential processing

step (Falge, 2001; Moffat et al., 2007). It is also necessary for cross-site com-

parisons, validation of satellite products, model inversions or synthesis studies.

Incomplete records result from u*-filtering and other data rejections under certain

climatic conditions (e.g. precipitation, dew), but also from malfunctioning, main-

tenance and calibration of the sensors (Luyssaert et al., 2009). The uncertainty

associated with the gap filling (i.e. interpolation) becomes larger with increasing

gap length (Moffat et al., 2007), especially during periods of rapid change such as
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green-up and senescence.

The LaThuile data collection contains—besides NEE, GPP and Reco

fluxes—radiation measurements (photosynthetic photon flux density (PPFD),

global radiation (Rg), net radiation (Rn), for some sites shortwave and longwave

incoming and outgoing radiation, below canopy or reflected PPFD), precipitation

and temperature records, sensible and latent heat fluxes, for some sites soil water

content data and in-situ faPAR measurements, as well as some derived quantities

such as surface conductance, soil water storage and evapotranspiration. The data

are available at half-hourly and daily temporal resolution.

2.1.2 A note on uncertainty

Many studies have addressed the robustness of eddy flux measurements, also

with regard to differences between sites. Uncertainties in eddy-covariance derived

ecosystem GPP values result from measurement uncertainties, gap-filling and flux

partitioning. Reichstein et al. (2005) and Papale et al. (2006) provide an extensive

summary of the uncertainties related to eddy flux data and present a standard-

ized processing method including spike detection, storage correction, u* filtering,

gap-filling and partitioning methods that has been applied to all net ecosystem

exchange data within the FLUXNET LaThuille data collection. Uncertainties due

to different processing of site data are thus minimised. Given a homogeneous

site, the largest uncertainty results from the so-called u*-correction (Papale et al.,

2006).

Another potentially big source of uncertainty, the partitioning of net ecosystem flux

into ecosystem respiration and gross primary productivity, has been addressed by

Lasslop et al. (2010). Their comparison of two partitioning methods shows a strong

correlation and no significant biases for gross primary productivity and ecosys-

tem respiration. Although the overall agreement of the two partitioning methods is

good, there can be large deviations for specific sites or years. Therefore, the influ-

ence of the partitioning method on the relationship between LUE and PRI has been

checked for the sites used in this study. The mean difference between GPP derived

with either flux partitioning method was calculated for each site-year. By dividing

this GPP-uncertainty-measure by daily aPAR, the resulting uncertainty in LUE was

calculated and subsequently added to/ subtracted from each daily LUE value to

visualise the range of possible LUEs(c.f. Fig. 4.6). Including this uncertainty did

neither change the observed patterns nor the conclusions. In fact, since GPP is a

gross flux, the relative error is quite small, while for NEE (not considered here) the

error can be relatively larger.

The high frequency site data are aggregated to half-hourly data by the principal

investigators of the individual sites with different software, which presents another

source of uncertainty. A comparison of different techniques performed by Mauder

et al. (2008) indicates a good agreement among the software within 5–10% differ-

ence for 30-min CO2 flux values. Considering this uncertainty does not change the
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results presented in this thesis. The quality evaluation by Göckede et al. (2008) for

the CarboEurope-IP network demonstrated a high average data quality, and good

representativeness of the measurement data for the specified target land cover

types.

2.1.3 Study-specific preparation of eddy covariance data and asso-
ciated measurements

The half-hourly GPP extracted from the FLUXNET LaThulle collection were quality-

checked with the flags included in the data set. Data points where NEE or PPFD

measurements were not original or high quality gap filled were discarded. As a

result of the standardised partitioning of the net CO2 flux GPP values can become

negative. When the ‘true’ value is close to zero, the statistical random error might

induce negative GPP values. In the pilot study, only 0.46 % of the night time GPP

values (with photosynthetic photon flux density < 100μmol m2 s−1) are lower than

zero. Records associated with negative GPP were excluded from the analysis.

To ensure that the data recorded by MODIS are representative and not contami-

nated by clouds, it is crucial to know if a satellite image was taken during clear-sky

conditions. Thus, for each day and each study site diurnal curves of incident PPFD

(as a measure of PAR) were plotted. The deviation of the actual PPFD-curve from

the typical diurnal course on a cloud-free day during the same time of year was

visually inspected and used to label days as ’cloud-free’, ’cloud-free during a in-

terval’ (start and end of that interval were recorded), or ’cloudy’, Fig. 2.1 shows

exemplary PAR curves for both a cloudy day and a day with clear-sky. The mea-

surements were taken within one week.
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Fig. 2.1: Incoming photosynthetically active radiation at a site in southern France on a

cloud free and a cloudy day, along with the curve that represents the diurnal course of

incident PAR on a cloud free day for that particular site and time of year. These curves

were used to identify cloud-free days for all sites.
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2.2 Remotely sensed data

2.2.1 MODIS data for calculating PRI

To process the MODIS data for this study the procedure described by Drolet et al.

(2005) was modified. Five MODIS products were downloaded from the Level 1 and

Atmosphere Archive and Distribution System (http://ladsweb.nascom.nasa.gov)

and the Earth Observing System data gateway http://redhook.gsfc.nasa.gov/
~imswww/pub/imswelcome/). Of those products, from both the Terra (product name

starts with ’MOD’) and Aqua (product name starts with ’MYD’) satellite, all scenes

containing the tower locations of the study sites were selected.

The MOD/MYD021KM product contains calibrated digital signals measured by the

MODIS sensor, from which at-sensor reflectances and radiances at 1 km spatial

resolution can be calculated from two pairs of scale and offset terms included in

the product (Toller et al., 2005). We calculated top-of-atmosphere reflectances for

the spectral bands listed in Table 1.2.

The MOD/MYD03 product has the same spatial extent and resolution and provides

the geographic coordinates as well as the solar and sensor zenith and azimuth

angles of each pixel. These geolocation data were used to extract the spectral in-

formation of the pixel closest to each tower location. For the same location aerosol

optical thickness was extracted from the MOD04 product and satellite-based esti-

mates of cloud coverage were obtained from the MOD35 product.

Prior to further processing those acquisition dates were discarded

• where the quality flags attached to the MODIS products indicated saturation

of a detector,

• where cloud cover is likely,

• where the quality of the atmospheric optical thickness estimation in the

MOD04 product is poor or

• where the sensor viewing angle at the tower site is more than 40◦ (otherwise

the MODIS pixel footprint would get too large, the result being a mixed signal

from different land cover classes, c.f. Wolfe et al., 1998).

2.2.2 Effect of correction for surface anisotrophy on photochemical
reflectance index

A small preliminary analysis was done to evaluate whether the accuracy of a

MODIS-based PRI would be improved by a BRDF-correction based on readily

available data.

For this, BRDF parameters derived from reflectance data recorded by the

PARASOL instrument aboard the POLDER3 satellite have been used (François-



32 Data, data preparation and methodology

Marie Bréon., pers. comm.). These BRDF parameters have been derived for each

of 4 different NDVI classes per biome type (IGBP-classification Bacour and Bréon,

2005; Vermote et al., 2009). This look-up-table approach was chosen because

there are relatively few places available where enough observations could be col-

lected to constrain the BRDF model (Lacaze et al., 2009). The temporal variations

in reflectance anisotropy within the BRDF-estimation-period at a given site are as-

sumed to be small.

For the site of the pilot study, MODIS-reflectance data have been corrected with

the POLDER/PARASOL BRDF parameters matching the current NDVI observa-

tion. A comparison between the corrected and the uncorrected data can be seen

in Fig. 2.2. While the BRDF-correction does influence the reflectance of the indi-

vidual bands, the effects cancel each other out due to the normalisation implicit

in the photochemical reflectance index (PRI). Correction the reflectance data for

scattering and absorption effects by the atmosphere using a model specifically de-

veloped for MODIS data (6S) does influence the PRI-signal (c.f. Fig. 2.3). It can be

concluded that correcting MODIS data for surface anisotropy with current globally

available correction methods would not improve the accuracy of LUE prediction

and is thus not worth doing.
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Fig. 2.2: Attempted correction for surface reflectance anisotropy with POLDER/

PARASOL BRDF parameters (6 × 6 km) for 2002 at FR-Pue without explicit consideration

of atmospheric effects. While the correction influences the reflectance of the individual

bands that are used to compute PRI, these effects cancel each other out in the vegetation

index itself.

2.2.3 Geolocation

For all satellite scenes used in this study, the orientation of the pixel closest to

the tower location has been plotted along with borders of distinct land cover types

and other features (such as roads) that are likely to affect the reflectance signal

(see Fig. 2.4). All these images were visually inspected. Whenever the tower-pixel

included a significant fraction of something other than the ecosystem observed by

the flux tower, the respective satellite scene has been discarded.
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Fig. 2.3: Surface reflectance corrected for anisotropy with MODIS BRDF parameters

versus surface reflection assuming an isotropic surface for 2000-2005 at FR-Pue. In both

cases a correction for atmospheric effects has been perfomed using 6S with the same

input, so the difference is only due to applying the BRDF correction with 6S. The relatively

small changes in reflectance (2.0-3.5%) result in rather large differences in PRI (13-31%).
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Chapter summary

Gross primary productivity (GPP) changes occur at different time-scales and due

to various mechanisms such as variations in leaf area, chlorophyll content, rubisco
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activity, and stomatal conductance. Diagnostic estimates of primary productivity

are obviously error prone when these changes are not accounted for. Additional

complications arise when factors influencing a biome-specific maximum light use

efficiency (LUE) must be estimated over a large area. In these cases a direct es-

timation of ecosystem LUE could reduce uncertainty of GPP estimates. Here, we

analyse whether a MODIS-based photochemical reflectance index (PRI) is a use-

ful proxy for the light use efficiency of a Mediterranean Quercus ilex forest. As the

originally proposed reference band for PRI is not available on MODIS, we tested

the reference bands 1 (620-670 nm), 4 (545-565 nm), 12 (546-556 nm), 13 (662-

672 nm), and 14 (673-683 nm) using different atmospheric correction algorithms.

We repeated the analysis with different temporal resolutions of LUE (half-hourly to

daily). The strongest correlation between LUE and PRI was found when consider-

ing only a narrow range of viewing angles at a time (especially 0-10◦ and 30-40◦).
We found that the MODIS-based PRI was able to track ecosystem LUE even dur-

ing severe summer time water limitation. For this Mediterranean-type ecosystem

we could show that a GPP estimation based on PRI is a huge improvement com-

pared to the MODIS GPP algorithm. In this study, MODIS spectral band 1 turned

out to be the most suitable reference band for PRI, followed by the narrow red

bands 13 and 14. As to date no universally applicable reference band was iden-

tified in MODIS-based PRI studies, we advocate thorough testing for the optimal

band combination in future studies.

3.1 Introduction

Many diagnostic models of terrestrial ecosystem productivity compute gross pri-

mary productivity (GPP) as the product of the amount of absorbed photosyntheti-

cally active radiation (aPAR) and a light use efficiency term (Monteith, 1972; Mon-

teith and Moss, 1977; Kumar and Monteith, 1981). aPAR can be conceived as

the product of photosynthetically active radiation incident on the ground (Incident

PAR (incPAR)) and the fraction of incPAR absorbed by the vegetation (faPAR).

These entities can be derived from global meteorological fields and satellite prod-

ucts, respectively (e.g. Ruimy and Saugier (1994); Goetz and Prince (1999)).

It follows from the above that light use efficiency (LUE) is the ratio of productivity

to aPAR. In this study, we refer more specifically to LUE as mols of CO2 captured

per mol of photons absorbed. LUE is inherently variable as it is determined by the

quantum efficiency of photosynthesis (Grace et al., 2007). Photoprotective mech-

anisms reduce the photosynthetic quantum efficiency at times of environmental

stress (such as temperature extremes, water or nutrient deficit, exposure to high

light intensities, e.g. Green (2003); Runyon et al. (1994)). In addition, decreased

stomatal conductance in times of drought will reduce available CO2 and thus the

rate of photosynthesis (Galmés et al., 2007).

In current diagnostic models, the light use efficiency (LUE) term is implemented

either as a constant (sometimes stratified according to plant functional type) or
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as a (biome-specific) maximum LUE that is reduced by scalars representing en-

vironmental stress (Yuan et al., 2007). It has been shown that this look-up table

approach is not able to capture the full range of productivity dynamics, especially at

finer temporal scales (Turner, 2002; Turner et al., 2006; Schwalm et al., 2006), pri-

marily due to inaccurate maximum LUE estimates (Martel et al., 2005). Additional

uncertainty arises when environmental drivers reducing maximum LUE need to be

estimated on a global scale (Heinsch et al., 2006). Also, current remote-sensing

based models have difficulties to detect drought stress (Turner et al., 2005) un-

less soil water content is accounted for (Leuning et al., 2005), which is difficult on

a global scale. If we can obtain direct estimations of LUE from remote sensing

data, this will lead us to more accurate calculations of GPP. We would need an

integrative indicator of how photosynthetic capacity is controlled by environmental

stress. Traditional vegetation indices such as the normalised difference vegeta-

tion index (NDVI) seem inappropriate for this task because they mainly measure

greenness and can only track decreases in photosynthetic activity when they lead

to yellowing or shedding of leaves (Gamon et al., 1995).

Another option to estimate LUE employs the mechanisms with which plants protect

their chloroplasts from the creation of harmful reactive oxygen species. This dan-

ger arises if plants are subject to more light than they can use for photosynthesis.

The photoprotection process includes changes in the trans-thylakoid pH-gradient,

conformational changes in the chloroplasts, and the de-epoxidation of violaxanthin

via antheraxanthin to zeaxanthin (Demmig-Adams and Adams, 2006). The forma-

tion of zeaxanthin is necessary to dissipate excess light as heat (Demmig et al.,

1987) and at the same time decreases reflectance in a narrow wavelength range

centred around 531 nm (Gamon et al., 1990).

The photochemical reflectance index (PRI) combines reflectance at this wave-

length (ρ531) with a reference wavelength insensitive to short-term changes in

light energy conversion efficiency (usually 570 nm, ρ570) and normalises it (Ga-

mon et al., 1992; Peñuelas et al., 1995):

PRI = (ρ531 − ρ570)/(ρ531 + ρ570) (3.1)

Many studies have been conducted at the leaf and canopy scale with plants rep-

resenting different photosynthetic pathways and ecosystems. In these studies PRI

was well correlated with the epoxidation state of xanthophylls and LUE (Peñuelas

et al., 1995; Stylinski et al., 2002; Sims and Gamon, 2002; Weng et al., 2006). A

strong relationship between PRI and LUE could also be shown for plants suffering

from environmental stress affecting energy dissipation pathways, namely nitrogen

limitation (Gamon et al., 1992), high ozone concentrations (Meroni et al., 2008),

water limitation (Suárez et al., 2008), or flooding (Naumann et al., 2008a). Several

studies tested the performance of PRI as an indicator of LUE at ecosystem scale.

The test was successful for boreal ecosystems, although in these studies LUE

was based on incident PAR rather then aPAR (Nichol et al., 2000, 2002). In pre-

dominantly water limited ecosystems the applicability of PRI as LUE proxy might

be limited to vegetation types that are not subject to strong changes in canopy
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structure (Filella et al., 2004; Sims et al., 2006).

3.2 Methods

3.2.1 Study site and data

For this study, we focused on a flux tower site in the Puéchabon state forest

(43.7414◦ N, 3.5958◦ E) in southern France, 35 km north-west of Montpellier. The

Quercus ilex forest has been managed as a coppice for centuries, the last cut oc-

curred in 1942. Allard et al. (2008) give a detailed site description, but we cite the

most relevant characteristics here. The average tree height is about 5 m, the over-

storey leaf area index (LAI) stated as 2.8±0.4). The main species in the shrubby,

sparse understorey (< 2 m) are Buxus sempervirens, Phyllirea latifolia, Pistacia

terebinthus, and Juniperus oxycedrus. The climate is of Mediterranean type, with

an annual precipitation of ca. 900 mm (ranging from 550-1550 mm for 1984-2006)

of which 80 % occur between September and April. A reason to chose the Puéch-

abon site for this analysis is the role of Quercus ilex as one of the dominant species

in Mediterranean type ecosystems (Terradas, 1999), covering about 6.55 x 104 km2

(Quézel and Médail, 2003). Our analysis of the entropy, a quantity describing data

homogeneity (Clausi, 2002), of a Landsat scene subset including the flux tower

indicates that the site is homogeneous at the MODIS spatial resolution (Fig. 3.1,

similar entropy levels in ca. 1 km distance from flux tower). The variations in sur-

face properties observable within ca. 1 km around the flux tower are characteristic

for the whole area covered by Quercus ilex growing on hard karstic limestones

(ca. 4000 km2) (Lacaze et al., 1994). Moreover, the flux tower footprint reliably

represents the targeted land cover type (Göckede et al., 2008). Comparability of

remote sensing data and in-situ measurements is therefore granted.

In this study we look at the years 2002 - 2005 because satellite data as well as

flux and meteorology data were available for this time span. Processing of the flux

data has been performed according to the standard CarboEurope methods (Re-

ichstein et al., 2005; Papale et al., 2006, see section 2.1). In addition to GPP from

the LaThuile data set we used half-hourly incident photosynthetically active radi-

ation (included in LaThuile data set) and below canopy photosynthetically active

radiation (bcPAR) data (available from principal investigator, i.e. Serge Rambal).

bcPAR is calculated as an average of 14 upward looking PAR sensors installed at

different places below the canopy. Incident PAR was measured with an upward

looking PAR sensor mounted on the eddy covariance tower. We filtered the PAR

values for measurement errors (i.e. reject PAR < 0 and standard deviation (bcPAR)

> 600 μmol m−2 s−1). As faPAR values we used estimates derived from half-hourly

incPAR and below canopy PAR as well as the operational MODIS faPAR data.

We used soil moisture data to identify periods of water stress. The daily time

course of soil water storage (mm) was simulated with a soil water balance model

(Rambal, 1993) and further compared with monthly profiles of soil water con-
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Fig. 3.1: Entropy calculated for the red band of a Landsat ETM+ scene (13. Aug. 2001).

The location of the Puéchabon flux tower is indicated by a cross. The circle marks the

relatively uniform area in which a MODIS pixel containing the tower will be positioned

(radius 1km + 300 m uncertainty). Light tone: high entropy, dark tone: low entropy.

tent measured with a neutron probe and integrated over the rooting depth (c.a.

4.5m). The relationships between simulated and observed values showed very

close agreement (r2 = 0.87).

3.2.2 Benchmark ecosystem light use efficiency

In this pilot study, the light use efficiency (LUE) of an ecosystem is defined as the

overall production of photosynthates per unit of absorbed photosynthetically active

radiation. After Monteith (1972) this can be expressed as

GPP = LUE ∗ faPAR ∗ incPAR = LUE ∗ aPAR (3.2)

where GPP is gross primary productivity, PAR is incident photosynthetically active

radiation, aPAR is the absorbed PAR, and faPAR is the fraction of PAR absorbed

by the vegetation. LUE can either be seen as the ratio of GPP and aPAR or as the

slope of a—possibly non-linear—function relating GPP to aPAR. To see whether

differences arise from these two concepts, we used both as benchmarks to test the

performance of several vegetation indices. The GPP values used in this context

stem from the half-hourly eddy covariance data.

3.2.2.1 Light Use Efficiency solely based on site data

At the half-hourly scale, the fraction of absorbed photosynthetically active radiation

(faPAR) was calculated as

faPAR = 1− bcPAR

incPAR
(3.3)
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We decided to use the more common term faPAR for what strictly speaking is

the fraction of intercepted PAR (fIPAR) (Gower et al., 1999). Nighttime values

(with incPAR < 100μmol m−1 s−1 and outliers were screened out. Outliers were

identified within a moving window as

X < Q1 − IQR ∪ X > Q3 + IQR (3.4)

where X are the data tested for outliers, Q1 and Q3 are the first and third quartiles,

and IQR is the interquartile range. The standard deviation in below canopy PAR

of the discarded observations was three times as high as in the full data set. The

filtered half-hourly faPAR was then multiplied with the quality checked half-hourly

incident PAR to obtain absorbed photosynthetically active radiation (aPAR). Light

use efficiency was subsequently calculated as the ratio of half-hourly GPP and

half-hourly aPAR. As the LUE in this study is calculated as μmol CO2

μmol photosynthetic photons ,

it is essentially a dimensionless quantity. We also tested whether it is more mean-

ingful to aggregate the half-hourly data and hence minimise noise. Thus we ap-

plied moving average filters to the half-hourly GPP, incPAR, and faPAR values,

with window sizes of 90, 150, and 210 minutes. LUE was calculated both as ratio

of averaged GPP and original half-hourly aPAR and as ratio of averaged GPP and

aPAR derived from averaged incPAR and faPAR. Light use efficiencies was also

calculated as a daily ratio. Daily averages of the original quality checked GPP,

incPAR, and bcPAR data were used to calculate first a daily average faPAR and

then aPAR and LUE.

To see whether we can obtain a better grip on the diurnal variations, we calculated

LUE as the slope of half-hourly GPP and aPAR. This variety of LUE was defined as

the slope of a linear function fitted to the half-hourly GPP and aPAR values of each

day. For 37 % of the days the goodness of fit (r2) was less than 0.6, thus fitting a

linear function to the half-hourly GPP and aPAR values of these days is somehow

arbitrary. As this occurred predominantly in low LUE conditions we did not reject

those slopes in order to avoid biasing the data. In case of negative slopes on some

summer days with low midday GPP observations the slope was set to 0.

3.2.2.2 Light Use Efficiency based on site data and MODIS faPAR

Collection 5 MODIS faPAR (Myneni et al., 2002) was downloaded separately for

the Terra and Aqua platform as ASCII subsets from the Oak Ridge National Lab-

oratory DAAC website (http://www.modis.ornl.gov/modis/index.cfm). In these data

sets each faPAR value is representative of a period of eight consecutive days. To

reduce gaps we merged the Terra and Aqua data sets. Preliminary tests with the

individual MODIS faPAR time series revealed that the MODIS product is prone to

underestimating faPAR for this site compared to bcPAR/incPAR based estimates,

especially in winter time. Thus, whenever two MODIS faPAR estimates were avail-

able for the same period, we kept the higher one for the combined data set. We

calculated another version of LUE through dividing average daily GPP values by

the product of the MODIS faPAR values and average daily incPAR.
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3.2.2.3 Light Use Efficiency as obtained from the MODIS biome property
look-up table (BPLUT)

To assess the performance of vegetation index-based LUE proxies we also cal-

culated the LUE in the way it is operationally used in the MODIS GPP algorithm

(Heinsch et al., 2003). In this approach, a biome-specific maximum light use effi-

ciency is reduced by a vapour pressure deficit scalar and a minimum temperature

scalar (c.f. section 4.1). These attenuation scalars are calculated from daily VPD

and Tmin based on linear ramp functions, the parameters of which are contained

in the biome property look-up table (BPLUT). We used site measurements instead

of the 1◦ by 1.25◦ NASA Data Assimilation Office (DAO) data routinely fed into the

MODIS GPP algorithm to exclude mismatches between DAO and site meteorology

as a source of error.

3.2.3 Remote sensing based estimates of light use efficiency

3.2.3.1 Acquisition and atmospheric correction of MODIS data

The processing of MODIS data for this study is based on the procedure described

by Drolet et al. (2005). The pre-processing of the MODIS data that is not specific

to this chapter is described in section 2.2.1.

To account for the variation in reflectance introduced by the way of processing, we

tested 4 different modes of atmospheric correction: With the 6S model (Vermote

et al., 1997) atmospheric correction was performed assuming uniform Lambertian

reflectance. Moreover, a dark object subtraction (DOS) approach has been taken

to correct the spectral data. We also included at-sensor-reflectances in the com-

parison, i.e. without any correction for atmospheric disturbance and geometric

effects.

From preliminary experiments (c.f. 2.2.2) we know that the effect of BRDF correc-

tion on PRI is small compared to the effect of atmospheric correction. However, the

impact of surface reflectance anisotropy on a MODIS-based PRI is difficult to as-

sess precisely. The standard MOD43 product only contains BRDF-parameters for

the "land bands", i.e. the spectral bands 1-7. The theoretical benefit resulting from

correcting anisotropy effects is eroded by the additional uncertainties caused by

unavailability of BRDF shape parameters from the same day, location, and spec-

tral bands as the radiance data. As considering BRDF effects is known to improve

the quality of NDVI (Bacour et al., 2006), we used 6S in the BRDF-correction mode

prior to the calculation of NDVI and EVI. The data set with no atmospheric correc-

tion applied was subject to the same constraints as for the 6S-approach to arrive

at the same number of samples.

In the DOS-case reflectance was calculated as

ρ =
π(Lsat − Lpath)

E0cos(Θz)Tz
(3.5)
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where Lsat is the at-satellite radiance, E0 is the exoatmospheric solar constant

(contained within MOD021km), and Θz is the solar zenith angle. Tz is the atmo-

spheric transmittance in the illumination direction, fixed at 1 in this case. The path

radiance is estimated separately for each spectral band as

Lpath = Lsat,min − 0.01(E0cos(Θz)Tz)/π (3.6)

The first step in retrieving Lpath consisted in selecting all acquisition times when

the pixel containing the tower is flagged as "confident clear", without cirrus clouds,

heavy aerosol or shadows, and where the sensor zenith angle was no more than

40◦. For scenes with flawless tower pixels the 25000 pixels with the smallest

Euclidean distance to the tower-pixel were examined for contamination by cloud

cover, shadows, aerosols or bad detectors. Lsat,min was then defined as the av-

erage of the 500 pixels with the lowest radiance among the good quality pixels

neighbouring the tower pixel. A more detailed description of dark object subtrac-

tion can be found in (Song et al., 2001).

The MODIS cloud mask does not allow the detection cloud cover or cloud shadows

with absolute certainty. To rule these distortions out we only analysed at acquisition

times where the diurnal curve of incident PAR (ground-based measurements) was

near-perfect (c.f. section 2.1.3). We refer to this approach whenever we talk about

cloud-free days in this study. The total screening left 439 acquisition times in case

of the 6S approach (and "no correction") and 1145 acquisition times in case of the

DOS approaches for further analysis. Due to increased cloud cover in winter the

majority of usable image acquisitions occurs during the growing season.

3.2.3.2 Preparation of vegetation indices

In studies using field- or airborne spectrometers with high spectral resolution the

PRI is defined as in equation 3.1. It is based on ρ531 (reflectance at 531 nm),

which is sensitive to the epoxidation state of xanthophyll cycle pigments, and ρ570
(reflectance at 570 nm), being largely unaffected by short-term stress (Gamon

et al., 1992).

MODIS-band 11 is centred at 531 nm (cf. Table 1.2). As the MODIS-sensor is not

equipped with a spectral band centred at 570 nm, we tested bands 1 (620-670 nm),

4 (545-565 nm), 12 (546-556 nm), 13 low gain (662-672 nm), and 14 low gain (673-

683 nm) as potential reference bands, in accordance with the proposition of Drolet

et al. (2005, 2008). To obtain only positive PRI-values that compare better with the

traditional vegetation indices, a sPRI was calculated (Rahman et al., 2004):

sPRI = (PRI + 1)/2 (3.7)

A modification of sPRI has been computed for each of the 5 reference bands and

each of the 3 modes of atmospheric correction. To compare the performance of

the PRI as a proxy of LUE against the capability of well known vegetation indices
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we calculated the normalised difference vegetation index (NDVI) (Tucker, 1979),

NDV I =
ρNIR − ρred
ρNIR + ρred

=
ρbd2 − ρbd1
ρbd2 + ρbd1

(3.8)

and the enhanced vegetation index (EVI) (Huete et al., 1997),

EV I = 2.5 · ρNIR − ρred
ρNIR + 6 · ρred − 7.5 · ρblue + 1

2.5 · ρbd2 − ρbd1
ρbd2 + 6 · ρbd1 − 7.5 · ρbd3 + 1

(3.9)

from reflectance data that were corrected for atmospheric and BRDF effects.

3.2.4 Modelling GPP

In the end, we would like to know which approach of estimating light use efficiency

gives the best results when modelling GPP with equation 3.2. The light use effi-

ciency term will be approximated by (a) the VI that correlates best with LUE and

(b) the LUE derived from the MODIS biome parameter look-up table and local

temperature and VPD measurements. For (a) we applied leave-one-out cross-

validation by fitting a linear model to all but one VI-LUE pairs. This model was

then used to calculate a LUE value from the left-over VI value. This LUE esti-

mate was then multiplied with the matching aPAR value: GPP = LUE·faPAR·PAR

= ( a·VI+b)·faPAR·PAR. The relative difference of this modelled GPP value to the

actually measured GPP was recorded. This procedure was repeated for every VI-

LUE pair. For (a) we run one batch with reference LUE calculated as daily slope

with only site data, for another batch we picked the LUE version with MODIS fa-

PAR. With this cross-validation approach we reduced the risk of overfitting to the

specific data available. We compared average values, mean absolute errors, and

root mean squared error (RMSE). We used the modelling efficiency measure (ME,

Janssen and Heuberger (1995)), which compares the relative improvement of the

chosen model over the benchmark situation ’average of observed values’:

ME = 1−
∑n

i=1(Oi −Mi)
2

∑n
i=1(Oi − Ō)2

(3.10)

We had a closer look at dry (soil water content < 100 mm) and wet periods (soil

water content > 200 mm).

3.3 Results

3.3.1 Comparing LUEs at different time scales

Multiple good quality MODIS image acquisitions rarely occur on the same day for

the same location. Even if, any light use efficiency that could be estimated from
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optical satellite data would still be a snapshot. The acquisition time can theoret-

ically influence the ability to estimate daily LUE from satellite data. In summer

time, the diurnal curve of GPP often displays a depression at midday, or GPP sim-

ply declines during midday and afternoon (data not shown). To check the effect

of acquisition time on the estimation of daily LUE, we compared LUE calculated

as half-hourly ratio against LUE calculated as daily ratio for all cloud-free days of

2002-2005. The potential image acquisition times of the Aqua and Terra satellite

in the study area range from 10 a.m. to 2 p.m. For all half-hour time steps within

this interval the linear fit between daily and half-hourly LUE yielded a correlation

coefficient of at least 0.92 (p<0.001, example for 12:00 to 12:30 shown in Fig. 3.2).

The linear functions relating the half-hourly and the daily LUE in each time interval

are close to the 1:1 line (slope 0.86-0.97, intercept 0.0013-0.0023).
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Fig. 3.2: Comparison of half-hourly and daily light use efficiency (LUE) for 12:00 to 12:30

at cloud free days (i.e. potential satellite acquisition days). Equally good or better

relationships are observed for the other half-hour intervals between 10 a.m. and 2 p.m..

The linear function fitted to the observations is shown by the continuous line, the 1:1 line

is dashed.

The relative similarity of half-hourly and daily LUEs is also revealed on an an-

nual basis. While–naturally–some half-hourly LUEs exceed the daily LUE, the an-

nual means are comparable and display the same interannual variations (Fig. 3.3,

A). The 90th percentile of daily LUE ranges between 0.0261 (2002) and 0.0230
μmol CO2

μmol photons (2002); this difference is equivalent to 11% of the 2002 value. The 90th

percentiles of all years exceed the maximum LUE given in the MODIS BPLUT for

evergreen broadleaf forests (0.021 μmol CO2

μmol photons ). The LUE calculated according to

the MODIS GPP algorithm does about represent the average LUE in non-summer

months. However, during the summer months, a decline in LUE calculated from

site GPP and aPAR can be observed that is not captured by BPLUT-based LUE

(Fig. 3.3).
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Fig. 3.3: (A) Annual means and standard deviation of half-hourly and daily light use

efficiency; LUE.max: maximum LUE for evergreen broadleaf forests according to MOD17

biome property look-up table (BPLUT) (B) BPLUT-approach does not capture LUE

dynamics of the site, similar pattern for all years

3.3.2 Strength of relationship between VIs and LUE, aPAR, and GPP

We then checked the correlation between 14 varieties of LUE and the vegetation

indices, i.e. the sPRI with 5 different reference wavelength and 3 modes of atmo-

spheric correction each, as well as the NDVI, and EVI. For each viewing-geometry

constrained subset of observations we made sure that all VIs were available simul-

taneously. Whether we look at the full data set or constrain to certain sun-sensor

geometries: the behaviour of LUE in the family of ratios at daily and sub-daily level

is very consistent. Therefore only one representative is displayed in Fig. 3.4 A-E.

In our study, the PRI with the broad reference band 1 yielded the best correlation

with ecosystem LUE (r up to 0.78). However, we only achieved such a good cor-

relation when constraining the dataset with respect to viewing geometry and when

we did not apply atmospheric correction. In the following we will detail the effects

of different constraints.

Looking at the whole dataset, only constrained as outlined in section 3.2.2 (Fig. 3.4

A, we find that the scaled PRI with the red reference bands (1, 13, 14) correlate

best with the ground based LUE estimates (r = 0.65, p<0.001 for LUE calculated

with MODIS faPAR, n = 156 samples). Choosing only observations made by ei-

ther Terra or Aqua does change neither the strength of the correlation nor the

slope of a linear function fitted to the LUE and PRI values (data not shown). The

best relationship between a "traditional vegetation index" and LUE is r ≤ 0.43, for

NDVI with atmospheric (Lambertian) correction (p<0.001). For all sPRIs analysed,

none of the atmospheric correction procedures tested does yield a significantly

better correlation with LUE compared to sPRI calculated from top-of-atmosphere

reflectances.

As a next step we only look at satellite data that are subject to backscatter condi-

tions, that is to say where sun and sensor have ≤ 10◦ difference in zenith angle

and ≤ 60◦ difference in azimuth angle. Because of these constraints and because

we made sure that we compared vegetation indices from exactly the same obser-
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Pilot study: Tracking seasonal drought effects on ecosystem light use efficiency with

satellite-based PRI in a Mediterranean forest

Fig. 3.4: (A-E) Correlation between ground based light use efficiency estimates (LUE

with faPAR from MODIS data and from interception measurements, c.f. section 3.2.2) and

MODIS vegetation indices. (A) Sensor zenith angle (SZA) 0-40◦ (B) SZA 0-10◦ (C) SZA

10-20◦, (D) SZA 20-30◦, (E) SZA 30-40◦ (F) Correlation of aPAR and VI (G) Correlation of

GPP and VI (F-G) constraints as for B. Black circles indicate negative correlation. The

atmospheric correction modes are abbreviated with L (correction with 6S assuming

Lambertian conditions), B (correction with 6S considering BRDF effects), U

(uncorrected), and D (dark object subtraction).

vation times, only six samples remained. For these 6 days, correlation between the

remaining sPRI and LUE values does improve a lot (data not shown because of

sample size). sPRI with reference band 14 yields the best correlation with LUE (r

= 0.91, for LUE based on MODIS faPAR, followed by sPRI with reference band 13

and 1. For observations near backscatter direction atmospheric correction seems

to be necessary to obtain a good relationship between the different sPRIs and

LUE. Due to the small number of observations in this configuration we must be

careful not to attach too much importance to this result. Neither NDVI nor EVI

have a correlation with LUE to speak of.

Constraining the satellite data to sensor zenith angles (SZA) of ≤ 10◦) or 30-40◦

increases the correlation between LUE and all vegetation indices compared to the

complete data set (Fig. 3.4 B, E). The sPRI with reference bands 1, 13, and 14

perform similarly well regarding their correlation with LUE (r up to 0.79 for sPRI with

reference band 1 and LUE based on MODIS faPAR, no atmospheric correction, p

< 0.001). In the subsets with 10-20◦ and 20-30◦ SZA the correlation between

vegetation indices and LUE is comparable to the full data set, both in pattern and

magnitude. For the viewing angle restricted data sets atmospheric correction does

generally not improve the correlation. NDVI and PRI with reference band 1 at

near-nadir SZA are the only exceptions.
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On the whole, PRI without atmospheric correction correlates best with LUE. This

pattern shows up again when correlating the VIs with absorbed PAR. The uncor-

rected sPRIs show a strong relationship with aPAR, this time negative (example

for 0-10◦ SZA shown in Fig. 3.4 F). The correlation patterns of other LUE varia-

tions versus VIs do also correspond to the aPAR correlation patterns, albeit at a

lower magnitude and only after selecting for narrow SZA (not all data shown). We

observe no correlation between GPP and sPRI or the other VIs (Fig. 3.4 G). This

pattern is consistent regardless of the constraints applied to the data set.

3.3.3 Ability of sPRI to track LUE over time

The sPRI with reference band 1(as well as the two narrow red bands) and no at-

mospheric correction (SZA 0-10◦) does well in tracking the seasonal course of light

use efficiency (Fig. 3.5 A). Especially, it picks up the decline in LUE during drought

periods in the summer (Fig. 3.5 C). The best performing sPRI (reference band

1, no atmospheric correction, SZA 0-10◦) yields a somewhat higher correlation

with LUE than the best performing traditional vegetation index (NDVI, reflectances

corrected with 6S assuming Lambertian behaviour, SZA 0-10◦), that is r = 0.78,

p<0.001 compared to r = 0.70, p<0.001 (Fig. 3.4). This relationship deteriorates

when all available data in this range of SZA are considered, not only those where

all vegetation indices are available simultaneously (Fig. 3.5). EVI is a far worse

predictors of LUE. The PRI (and LUE) is minimal during summer droughts. Since

the amount of incident PAR is maximum in summer, aPAR and PRI are inversely

correlated (r = -0.86, p <0.001) for sPRI with reference band 1, no atmospheric

correction, SZA 0-10◦ and daily aPAR; c.f. Fig. 3.4). All of the potential refer-

ence bands tested in this study are clearly influenced by the same forcing and

show a distinct seasonal cycle. The changes within the ecosystem add to the

effects caused for instance by viewing geometry and absorbed PAR and can be

visualised as normalised ratios. As band 1 integrates over the wavelength of band

13 and 14 it is not surprising that they show the same temporal variation. The

gaps in summertime result from saturation of the narrow red bands. These bands

were designed with a higher sensitivity to monitor dark oceanic surfaces and are

thus more likely to saturate over relatively bright terrestrial targets, especially when

vegetation cover is not dense.

3.3.4 Modelling GPP

The VI selected as LUE-proxy in this analysis is the sPRI with reference band 1 and

no atmospheric correction performed (constrained to near nadir viewing angles).

PRI with reference band 1 was chosen over the PRIs with reference bands 13 and

14 because band 1 does rarely saturate and thus yields a higher data coverage. As

shown in section 3.3.3, the PRIs with red reference bands otherwise behave very

similar. Setting up a model with this sPRI and a site-data-only LUE yields a relative

difference between modelled and observed GPP of 40.2% (median, n=49, c.f. Fig.
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Fig. 3.5: (A) Timeseries of LUE, best-performing PRI (reference band 1, no radiance

correction), and best-performing other vegetation index (NDVI with BRDF correction) (B)

Reflectances used for PRI calculation (no atmospheric correction) (A+B) Only

observations with near-nadir viewing angles are shown (C) Cumulative water deficit as

water stress indicator and daily aPAR averages (D) Sun zenith and azimuth angles during

time of image acquisition (A+C) A = Aqua, T = Terra

3.6, Table 3.1). When the GPP estimation is based on LUE with MODIS faPAR,

the difference to the observed GPP is 50.6% (median, n=44). If GPP is modelled

with the MODIS algorithm, the difference to the observed GPP is as large as 151%

(median). To achieve comparability, we chose the same observation times as in the

first set-up (n=49). With the look-up table approach GPP is severely overestimated

during all satellite data acquisition times (near nadir viewing angles) and even more

so during times of water stress (Table 3.2). In contrast, the discrepancy between

observed GPP values and PRI-based GPP estimates during dry periods is not

much different from periods with high water availability.
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Tab. 3.1: Comparison of GPP-models (c.f. section 3.3.4). The LUE for the two leftmost

models was estimated from sPRI (reference band 1, no atmospheric correction, sensor

zenith angle 0-10◦), based on a regression of the other n-1 sPRI values against LUE

estimates. In the model on the right, LUE is calculated from MODIS biome property

look-up table (BPLUT) parameters and site meteorological data. Numbers are

dimensionless or in μmolCO2 m−2s−1 (∗).

LUE from

site data only site GPP & MODIS faPAR BPLUT

number of obs. 49 45 44

avg. modelled GPP∗ 2.126 3.860 8.747

avg. observed GPP∗ 3.981 4.051 4.047

Mean absolute error∗ 2.088 1.390 4.752

RMSE∗ 2.3208 3.389 27.345

Modelling efficiency -5.172·1032 -1.034·1030 -3.470·1032

Tab. 3.2: Average difference between observed and modelled GPP (cf. section 3.3.4,

Table 3.1) in dry periods, well-watered periods, and the whole time series with standard

deviation (in μmol CO2 m−2 s−1). In parentheses: number of observations.

LUE from: ΔGPPdry ΔGPPwet ΔGPPall

site data only 1.602±1.239 (14) 1.107±1.995 (11) 1.855±1.955 (49)

site GPP & MODIS faPAR -0.120±1.276 (14) -0.142 ±1.366 (11) 0.191±1.852 (45)

BPLUT -6.230±1.443 (14) -2.598±2.481 (10) -4.596±2.396 (44)
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Fig. 3.6: Relative difference (%) between observed GPP and GPP derived from n light

use efficiency models. The LUE for the two leftmost models was estimated from sPRI

(reference band 1, no atmospheric correction, SZA 0-10◦), based on a regression of the

other n-1 sPRI values against LUE estimates. In the right-hand model, LUE is calculated

from MODIS biome property look-up table (BPLUT) parameters and site meteorological

data.
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3.4 Discussion

3.4.1 Comparing LUEs at different time scales

We demonstrate specifically for a water-limited site that midday LUE on cloud-free

days is a good proxy for daily LUE (Fig. 3.2). Other experimental evidence sug-

gests that this relationship might be generally applicable. Sims et al. (2005) report

a good relationship between midday and daily LUE on clear days (r = 0.85) for

pooled data from a wide range of vegetation types. This was indirectly confirmed

for a boreal deciduous forest where Drolet et al. (2005) found low variability in

LUE on days useful for MODIS image acquisition. In this case, faPAR for LUE

calculation was derived from tower measurements of NDVI. For pooled data from

a Canadian boreal forest with different plant functional types and levels of distur-

bance, Drolet et al. (2008) found a strong relationship between midday and daily

LUE (r = 0.96) on clear days (using MODIS faPAR). That we do not find strong

differences in the PRI-LUE relationship for different LUE aggregation levels does

fit in with this general picture.

The highest 90th percentile of daily LUE per year within the study period amounted

to 0.0261 (2002). This compares well with the maximum LUE in other semiarid

ecosystems, for instance Sims et al. (2006) reported a maximum daily LUE of 0.02

for a relatively sparse Californian chaparral ecosystem. The site specific maxi-

mum LUE is subject to considerable interannual variability (Fig. 3.3). Within the 4

years analysed, the 90th percentile varied by 11%. This indicates that MOD17-like

models might improve their performance if parameters were optimised on an an-

nual basis. The operational MOD17 maximum LUE for evergreen broadleaf forests

was too low for the Puéchabon forest in the study period. Moreover, the MOD17

biome property look-up table (BPLUT) approach did not simulate the summer de-

pression in LUE, although we used accurate on-site measurements of temperature

and VPD. In principle, an optimisation of the MOD17 BPLUT parameters could re-

duce the discrepancy between modelled and actual LUE. In any case, the error In

MOD17 GPP is likely to increase when the constraining environmental factors are

extracted from global meteorology datasets. Also, for this particular site the com-

plete water balance needs to be considered to model GPP accurately (unpublished

results by Markus Reichstein). Considering soil water content might theoretically

improve the situation but retrieving (deep) soil moisture on large spatial scales is

not feasible. These results justify the search for alternative LUE estimates.

3.4.2 Strength of relationship between VIs and LUE, aPAR, and GPP

In this study, the red MODIS spectral bands (620-670 nm, 662-672 nm, 673-683

nm) turned out to be the most suitable reference bands for PRI (Fig. 3.4,3.4).

The PRI with red reference bands was shown to be clearly more related to LUE

than NDVI or EVI. This behaviour is as expected, it has been shown before that

using NDVI results in an overestimation of productivity, especially in water limited
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sites Running and Nemani (1988). When sampling the total set of satellite data

for acquisitions within a narrow range of viewing angles, we found stronger rela-

tionships between all versions of PRI and LUE compared to the complete data set.

This is especially true for near-nadir viewing angles and viewing zenith angles of

30-40◦. Barton and North (2001) showed in a simulation study that the influence

of soil background reflectance on PRI is significant for canopies with a leaf area

index (LAI) below 3. The relatively sparse vegetation cover in the study area (leaf

area index (LAI) just below 3) might thus give rise to a sensitivity of the PRI-LUE

relationship to differences in viewing angle. We also need to keep in mind that the

PRI, since it is observed from above, represents at best top-of-canopy conditions,

not an average over the whole canopy. Some scatter in the LUE-PRI relationship

is probably due to this fundamental difference between any optical remote sens-

ing data and the eddy covariance based GPP estimates involved in the evaluation,

which integrate over the whole canopy.

For a boreal deciduous forest Drolet et al. (2005) found a strong linear positive rela-

tionship between LUE and PRI with reference band 13 calculated from backscatter

top-of-atmosphere reflectance(r = 0.87). A weaker relationship was found when

using reference band 12 (r = 0.73). They found no significant correlation for the

reference bands 1 and 4. Drolet et al. (2008) estimated ecosystem LUE for sev-

eral Canadian boreal forest sites with different plant functional types and degrees

of disturbance with MODIS bands 10, 12, 13, and 14 (488 nm, 551 nm, 667 nm,

and 678 nm) as reference bands. Reference band 14 yielded the best correlation

with LUE (r2 = 0.70, pooled data). However, in that study no significant correlation

was observed for the individual sites. In our study, PRIs formed with the narrow

red bands 13 and 14 have about the same relationship to LUE as a PRI with the

broader red band 1 (c.f. Fig. 3.4). Red might be generally useful as a reference

band for MODIS based PRI.

Garbulsky et al. (2008) estimated LUE of an Italian Quercus ilex forest (leaf area

index (LAI) = 3.5) with a MODIS-based PRI. Using at-sensor-radiance and band

12 for reference they found a good correlation (r = 0.78) for all cloud-free image

acquisition days. The better performance of reference band 12 and the lower sen-

sitivity to viewing geometry compared to the Puéchabon site might be due to the

higher leaf area index (LAI) (3.5 compared to 2.8±0.4), and maybe also due to

generally better water availability (Damm et al., 2002). The performance of the red

bands at this closed-canopy stand was not published. For using a satellite-derived

PRI at larger spatial scales it will be necessary to find out the optimal reference

band under different conditions. If no universally applicable reference band can be

identified, we would need to establish stratification rules.

In this study using top-of-atmosphere reflectance data for PRI calculation yielded

the highest correlation with LUE for most viewing geometries. In the backscatter

constellation, correction with 6S was better, although based on few data. Drolet

et al. (2005) reported a similar phenomena. This suggests that the estimates of

atmospheric optical thickness provided as MODIS product and/or atmospheric cor-

rection with 6S add uncertainty to the small PRI signal. The sampling frequency
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and the range of viewing angles used to produce the MODIS atmospheric optical

thickness product might be a limiting factor. Integrating data from other satellite

missions might mitigate this problem. The simulation study performed by Barton

and North (2001) suggests that the index is robust to variation in aerosol as the

top-of-atmosphere PRI followed the ground PRI over a range of optical thickness.

Their explanation is that the (original) bands are close in wavelength and so unlike

Rayleigh scattering the aerosol effects are similar at both 531 and 570 nm. This

reasoning is not so convincing when using a red reference band. Currently, we do

not have an explanation why using uncorrected red bands gives nevertheless the

best results.

3.4.3 Ability of sPRI to track LUE over time

The MODIS-based PRI with one of the reference bands 1, 13, or 14 and no ra-

diance correction applied is able to track the seasonal course of LUE if the ob-

servations are constrained to narrow ranges of viewing angles. It is the first time

this has been demonstrated for a severely water limited Mediterranean site. The

constraints in viewing geometry probably limit the effect of anisotropy in surface re-

flectance. The remaining temporal variations in the PRI signal in the restricted data

sets are better linked with variations in ecosystem LUE. It is likely that not only the

xanthophyll-cycle pigment interconversions give raise to the changes in PRI but

also seasonal changes in the concentration of xanthophyll cycle pigments. Xan-

thophyll levels, carotenoid concentrations in general, and chlorophyll levels relate

to seasonal changes in vegetation productivity; the PRI signal has been shown to

match these variations (Sims and Gamon, 2002; Stylinski et al., 2002; Sims et al.,

2006). Filella et al. (2004) state that xanthophyll and carotenoid levels change with

environmental conditions and thus also are indicators of photosynthetic downreg-

ulation under stress.

The NDVI did not track the decline in LUE as well as the PRI with reference band

1 (Fig. 3.5). Sims et al. (2006) gave one plausible explanation for this: compared

to PRI the NDVI seasonal pattern is more sensitive to solar elevation angle effects.

The relatively good correspondence between NDVI and LUE in the summer of

2005 compared to previous summers probably results from a caterpillar attack

(Allard et al., 2008).

Gamon et al. (1992) tried different reference wavelength for sunflower canopies,

550 nm did not work well with the water stress experiments. Leaves of sclerophylly

are less prone to wilting, hence the fraction of soil seen from sensor does not vary

(due to wilting, but surely due to changes in viewing angle).

3.4.4 Modelling GPP

In this study, GPP models relying on PRI as an LUE proxy yielded considerably

more agreement with observations than the MODIS GPP algorithm, especially
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during dry periods. Both approaches were tested with site meteorological data

(including incPAR) and MODIS faPAR, hence the differences in performance are

not due to the quality of input data. Further research should address the perfor-

mance of PRI based models with a more universal parameterisation (e.g. for all

Mediterranean evergreen needleleaf forests).

Data from optical sensors such as MODIS are often cloud contaminated, temporal

aggregations are used to increase the spatial coverage. Sims et al. (2005) docu-

mented that the inclusion of cloudy days leads to a large variation of LUE within

the aggregation period and thus disturbs the relationship between midday LUE

and LUE of the aggregation period. They suggest to estimate midday LUE from

satellite data and to compute midday gross carbon fluxes from that. Then rather

robust relationships between midday gross carbon flux and eight-day fluxes should

be used to extrapolate to longer time periods.

3.4.5 General considerations

Overall, the Puéchabon Quercus ilex forest seems to be a suitable test case to

study the performance of satellite based PRI in drought-prone areas. For this

evergreen forest the PRI signal is not dominated by large seasonal variations in

leaf area through senescence or strong wilting. Other semiarid ecosystems, for

instance those with brevi-deciduous leaves and sparser canopy structure, can be

less suitable for PRI studies (Filella et al., 2004; Sims et al., 2006). But also for

the sclerophylly site studied here we can not exclude that the relationship between

PRI and LUE in years with excessive drought might differ from years with normal

droughts. Sims et al. (2006) observed such changes for a Californian chaparral

ecosystem.

3.5 Conclusions

We found that MODIS PRI seems to be a useful estimator of ecosystem LUE,

despite the influence of soil and other photosynthetically inactive material on the

reflectance signal. This statement is valid during the whole growing season and

also times of severe water deficiency. The light use efficiency at times of satellite

data acquisition is close to the daily average of light use efficiency, thus PRI can be

used to estimate daily LUE. The PRI with either of the three tested red reference

bands is correlated best with on-site LUE. Given that the narrow red bands 13 and

14 are prone to saturation in summer and thus provide less useful observations,

band 1 seems to be the best reference band for the evergreen oak forest studied

here. Since the choice of reference band matters, we recommend to perform an

independent careful screening for each new study area, or to look for a universally

applicable reference band for MODIS-based PRI. NDVI and EVI were compara-

tively poor proxies of LUE. The relationship between PRI and LUE improves when

the analysis is restricted to small ranges of viewing angles. Near nadir viewing
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angles yield the best results. In the end, this study also demonstrates that GPP

models relying on PRI as a LUE proxy correspond considerably better with obser-

vations than the MODIS GPP algorithm, especially when water is scarce.
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Chapter summary

Several studies sustained the possibility that a photochemical reflectance index

(PRI) directly obtained from satellite data can be used as a proxy for ecosystem

light use efficiency (LUE) in diagnostic models of gross primary productivity. This

modelling approach would avoid the complications that are involved in using me-

teorological data as constraints for a fixed maximum LUE. However, no unifying

model predicting LUE across climate zones and time based on MODIS PRI has
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been published to date. In this study, we evaluate the effectiveness with which

MODIS-based PRI can be used to estimate ecosystem light use efficiency at study

sites of different plant functional types and vegetation densities. Our objective is

to examine if known limitations such as dependence on viewing and illumination

geometry can be overcome and a single PRI-based model of LUE (i.e. based on

the same reference band) can be applied under a wide range of conditions. Fur-

thermore, we were interested in the effect of using different fraction of absorbed

photosynthetically active radiation (faPAR) products on the in-situ LUE used as

ground truth and thus on the whole evaluation exercise. We found that estimating

LUE at site-level based on PRI reduces uncertainty compared to the approaches

relying on a maximum LUE reduced by minimum temperature and vapour pres-

sure deficit. Despite the advantages of using PRI to estimate LUE at site-level, we

could not establish an universally applicable light use efficiency model based on

MODIS PRI. Models that were optimised for a pool of data from several sites did

not perform well.

4.1 Introduction

Sound estimates of gross primary productivity (GPP) are essential for an accurate

quantification of the global carbon cycle and an understanding of its variability

(Schulze, 2006). Many diagnostic models of primary productivity are based on a

light use efficiency approach (Running et al., 2000; Yuan et al., 2007; Beer et al.,

2010, e.g.).

All light use efficiency models represent photosynthetic assimilation of vegetation

as a function of the amount of photosynthetically active radiation absorbed by

plants (aPAR) (Monteith, 1972; Running et al., 2000). In these models, all envi-

ronmental and biophysical constraints on the conversion of photo energy to plant

biomass are aggregated in the term light use efficiency (LUE). GPP is thus calcu-

lated as:

GPP = LUE × aPAR (4.1)

aPAR = faPAR × PAR (4.2)

where faPAR is the fraction of absorbed photosynthetically active radiation . The

simplicity of this approach, with little need for ancillary data, makes it possible to

base these models on remote sensing products and meteorological fields (Hilker

et al., 2008b; McCallum et al., 2009). Thus, an important prerequisite for applica-

tion on the global scale is fulfilled.

It should be noted, although the definition of aPAR is clear, faPAR and incident

PAR derived from different sources and can differ substantially (e.g. McCallum

et al., 2010).

LUE is influenced by many factors and thus varies in space and time. Factors lim-
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iting LUE include plant water availability and atmospheric water demand as well as

temperature and plant nutrition. LUE is usually modelled by constraining a certain

maximum LUE according to a set of environmental conditions (e.g. Running et al.,

2000; Yuan et al., 2007; Horn and Schulz, 2010). The determinants of LUE and on

which time-scales they act are only partially resolved. Among the main difficulties

on the daily to annual time-scales are finding a suitable surrogate for ecosystem

water limitation (Garbulsky et al., 2010) and the accuracy of the available meteo-

rological data (Heinsch et al., 2006).

It is thus attractive to derive LUE directly from just one kind of satellite data, with-

out relying on estimates of different meteorological variables. Two types of re-

motely sensed data are candidates for this: fluorescence and the photochemical

reflectance index (PRI).

While studies using airborne fluorescence measurements had promising results,

the signal-to-noise ratio needs to be improved to be useful for satellite-based ob-

servations; efforts are ongoing (Meroni et al., 2009b). The PRI combines re-

flectance at 531 nm (ρ531) with a reference wavelength insensitive to short-term

changes in light energy conversion efficiency (ρref ) and normalises it (Gamon et al.,

1992; Peñuelas et al., 1995):

PRI = (ρ531 − ρref) / (ρ531 + ρref) (4.3)

The original PRI formulation by Gamon et al. (1992) used 550 nm as the primary

reference band since, according to a study on sunflowers, it seemed least affected

by changes in green canopy structure. It also had 531 nm and reference wave-

length swapped compared to recent use (c.f. Eq. 4.3). Later studies noted that

for leaf-level reflectance, 570 nm appears to normalise best for confounding ef-

fects like pigment content and chloroplast movement (Gamon et al., 1993a, 1995).

Thus, 570 nm became the most widely used PRI reference band. Recently, Mid-

dleton et al. (2009) showed for a douglas fir forest that reference bands in the

ranges 540–574 nm, 480–515 nm and 670–680 nm have a high correlation with fo-

liage LUE. An overview on protocols used for PRI studies can be found in a review

by Garbulsky et al. (2011).

PRI can be a useful proxy for LUE because changes in reflectance at 531 nm are a

side effect of mechanisms that protect the photosynthetic system in the leaves from

excess light by down-regulating carbon assimilation (for an extensive summary,

see Middleton et al., 2009; Coops et al., 2010). PRI also correlates with the total

content of carotenoid pigments (Stylinski et al., 2002), this needs to be considered

when looking at seasonal changes in PRI.

At site level, PRI has been shown to give good estimates of LUE when derived from

field spectrometers (Gamon et al., 1992), but also from airborne sensors (Nichol

et al., 2000, 2002; Rahman et al., 2001). Recently, the MODIS sensor on TERRA

and AQUA has also been used successfully at ecosystem scale (Rahman et al.,

2004; Drolet et al., 2005, 2008; Garbulsky et al., 2008; Goerner et al., 2009; Xie

et al., 2009). MODIS provides a useful temporal resolution, a band around 531 nm,
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but not the reference band at 570 nm. Thus, the MODIS PRI has been based on

several alternative reference bands. However, the PRI has some well known limita-

tions (Grace et al., 2007). Multiple studies showed that the PRI signal is affected by

the viewing and illumination geometry, including the fraction of sunlit and shaded

leaves seen by the sensor, canopy structure, and background reflectance (Barton

and North, 2001; Nichol et al., 2002; Suárez et al., 2008; Sims and Gamon, 2002;

Louis et al., 2005; Drolet et al., 2008; Hilker et al., 2009; Middleton et al., 2009).

These difficulties, along with data access problems, might have hindered the eval-

uation of an LUE model based on MODIS PRI across space and time. So far it is

unclear if one model can be applied at multiple sites. Also, the question remains

whether one MODIS PRI reference band can be recommended for all sites, or if dif-

ferent reference bands have to be used depending on for example plant functional

type and vegetation density.

Despite the fluctuations in illumination geometry, dimension of the surface area

sensed by each instantaneous field-of-view and background reflectance at every

site, the site level models based on MODIS PRI published so far yielded good

agreement with observed LUE. That considerable potential exists for mapping

LUE with a common model has also been shown by Drolet et al. (2008), who

found a unifying model for eight sites in central Saskatchewan. These boreal sites

are close to each other (within the confines of one satellite scene), hence they can

be simultaneously monitored instead of by comparing data from different image

acquisitions. The viewing geometry and atmospheric disturbance of the satellite

signal is therefore similar. Consequentially, the next step is to evaluate PRI based

models across sites and satellite scenes.

In this study, we evaluate the effectiveness with which MODIS-based PRI can be

used to estimate ecosystem light use efficiency (LUE) at study sites of four distinct

plant functional types and different vegetation densities. Our objective is to find out

if the limitations can be overcome and a single PRI-based model of LUE (i.e. based

on the same reference band) can be applied under a wide range of conditions.

Furthermore, we were interested in how different faPAR products affect the in-situ

LUE estimates which are used as ground truth.

4.2 Data and methods

4.2.1 Selection of study sites

To be able to properly evaluate the PRI-based LUE estimates, we conducted this

study at a selection of sites from the FLUXNET LaThuile data set that provides the

necessary gross primary productivity and site meteorology data (www.fluxdata.
org).

Here, we focus on non-boreal forest/savanna sites with water stress during part of

the year. Some sites have to be excluded because of too few valid PRI data. Such
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Tab. 4.1: Overview of the sites used in this study.

Site

code

Site name Lat, Lon

(flux tower)

Data

used

PFT (dominant

species)

LAI References

ZA-Kru Skukuza,

Kruger

National Park

(South Africa)

−25.0197,

31.4969

2001–

2003

Savanna

(Combretum

apiculatum,

Sclerocarya birrea,

Acacia nigrescens)

1 (area avg.

trees, max.), 3

(within tree

canopy, max.),

1 (herbaceous

layer, avg.)

Scholes et al.

(2001);

Kutsch et al.

(2008)

FR-

Pue

Puechabon

(France)

43.7414,

3.59583

2000–

2006

evergreen

broad-leaved forest

(Quercus ilex L)

2.8± 0.4
Allard et al.

(2008)

IT-Cpz Castelporziano

(Italy)

41.7052,

12.3761

2000–

2006

evergreen

broad-leaved forest

(Quercus ilex L.)

3.2–3.8
Tirone et al.

(2003)

US-

MMS

Morgan

Monroe State

Forest (US)

39.3231,

−86.4131

2000–

2005

deciduous

broad-leaved forest

(sugar maple, tulip

poplar, sassafras,

white and red oak)

4.8
Schmid et al.

(2000)

US-

Me2

Metolius –

intermediate

aged

ponderosa

pine (US)

44.4523,

−121.557

2003–

2005

evergreen

needle-leaved forest

(Pinus ponderosa)

2.8

(overstorey),

0.2

(understorey)

Thomas et al.

(2009)

data scarcity can be caused by frequent cloud cover or saturation of the satellite

signal at sparsely vegetated sites. The largest limitation on the number of relevant

sites is the size of the targeted ecosystem surrounding the flux tower. It must be

large enough to contain the footprint of a ≥1×1 km MODIS pixel so that the flux

tower footprint is representative of the remotely sensed footprint.

We thus conducted our analysis on 5 sites: two dry-summer subtropical ever-

green broad-leaved forests, a site with vegetation typical for tropical savanna,

a humid-subtropical deciduous forest and a dry-summer subtropical evergreen

needle-leaved forest (see Fig. 4.1). A sixth site (Mitra) fulfilled the homogeneity

criteria mentioned above but had to be discarded because to few satellite data

were available, a consequence of frequent sensor saturation due the sparseness

of vegetation. All years for which eddy covariance and MODIS data are available

simultaneously were analysed (Table 4.1). Castelporziano is a borderline case re-

garding the extension of the target ecosystem. For this site, we discarded satellite

scenes in which the pixel containing the flux tower is partially made of non-forest.

4.2.2 In-situ LUE

We define LUE as the effectiveness with which an ecosystem uses absorbed pho-

tosynthetically active radiation (aPAR) to produce photosynthates (recorded as
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LAImax = 2.3 (0.55 by trees)
too many satellite observations 
saturated  not used

Fig. 4.1: Map of non-boreal, drought-influenced sites from the FLUXNET La Thuille

dataset, where the 1x1 km MODIS pixel including the tower is homogeneous.

gross primary productivity, GPP):

LUE =
GPP

faPAR × PAR
(4.4)

We used daily and half-hourly GPP data derived from eddy covariance measure-

ments, in-situ PAR measurements from the Fluxnet LaThuile data base, and dif-

ferent satellite based faPAR data sets. The eddy covariance data were processed

using the standardised methodology described in Papale et al. (2006); Reichstein

et al. (2005). We calculated aPAR as the product of available photosynthetically

active radiation (PAR, here in the form of average daylight photosynthetic photon

flux density—μmol m−2 s−1) and the fraction of PAR that is actually absorbed by

the vegetation (faPAR).

Since representative in-situ faPAR measurements are scarce, and considering

potential application of the PRI model to a larger area, we used satellite based

faPAR data to calculate aPAR. Readymade faPAR products are known to differ

from each other (McCallum et al., 2010). To test the impact of product choice

on the evaluation of the PRI-models we used three different faPAR sets: the

MODIS collection 5 MOD15A2 and MYD15A2 products (https://lpdaac.usgs.
gov/lpdaac/products/modis_products_table/leaf_area_index_fraction_
of_photosynthetically_active_radiation/8_day_l4_global_1km/mod15a2)

(2000–2006, 8-days-composite), the SeaWiFS-based faPAR of the Joint Research

Centre (http://fapar.jrc.ec.europa.eu) (2000–2006, although much of the

2006 data were discarded because of poor quality flags, 10-days-composite)

and the SPOT-Vegetation based Cyclopes faPAR product (Baret et al., 2007)

(only available for 2000–2003, 10-days-composite). The faPAR data were quality

checked and linearly interpolated to daily time steps, except for periods where

no good data were recorded for longer than 19 days (equal to 1 missing value in
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the aggregated SeaWiFS and Cyclopes products) or 23 days (equal to 2 missing

values in the aggregates MODIS product). The light use efficiency calculated with

these faPAR data is denoted as LUEMODIS, LUESeaWiFS and LUECyclopes. For the

US-Me2 site, no valid aPAR is contained in the Cyclopes data set throughout the

study period.

4.2.3 Modelling LUE from MODIS based PRI

4.2.3.1 Acquisition and processing of MODIS reflectance data

For the study on multiple sites the pre-processing described in section 2.2.1 has

been slightly changed. Instead of downloading the MOD35 cloud product the infor-

mation needed for an initial cloud cover screening was taken from the MOD/MYD04

aerosol product.

Light reaching a satellite sensor after traveling trough the atmosphere is inevitably

affected by scattering and absorption. In addition, natural surfaces reflect light

differently subject to the viewing geometry. Ideally, data recorded by a satellite

sensor should be corrected for these wavelength-dependent effects to make the

reflectances computed from these records comparable. Albeit, from the pilot study

(see chapter 3, Goerner et al., 2009) and preliminary experiments we know that

correcting MODIS reflectances with bidirectional reflectance distribution function

(BRDF) parameters from existing data bases either has no effect on the PRI signal

(when using POLDER/PARASOL based parameters (Bacour and Bréon, 2005),

see Fig. 2.2) or only seems to increase noise in the PRI signal (when using the

MODIS MOD43 product, see Fig. 2.3). Additional doubt about the usefulness of

correcting reflectance data for this study using ready made products is caused

by the unavailability of a BRDF model and atmospheric parameters at the exact

acquisition time and spatial resolution of the radiance data and some of the spec-

tral bands listed in Table 1.2. Because the need for synchronous estimates of

atmospheric parameters flagged as high quality also reduces the number of avail-

able observations, we chose not to correct specifically for atmospheric or surface

anisotropy effects. To some degree, a correction is inherent in a ratio made of

reflectances that are not too far apart in the visible part of the solar spectrum.

The MODIS cloud mask does not allow the detection of cloud cover or cloud shad-

ows with absolute certainty. To rule out cloudiness, we visually checked for each

day if the daily course of incident PAR (measured in-situ as Photosynthetic Photon

Flux Density on half-hourly basis) follows an ideal curve. Acquisition dates at which

the measured PAR at the flux towers notably differs from the PAR pattern during

cloud free days at the same time of year were excluded from further analysis (see

Fig. 2.1 for example).
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Tab. 4.2: Overview of abbreviations used for “in-situ” light use efficiency and for LUE

modelled from vegetation indices (The models denoted with * were established for each

site (for all MODIS viewing angles and also specifically for viewing angles <10◦) as well

as for all evergreen sites combined and the two evergreen oak sites combined.)

Abbreviation Explanation

LUE used for evaluation

LUEMODIS light use efficiency calculated from site GPP, site PAR, and

MODIS faPAR

LUESeaWiFS light use efficiency calculated from site GPP, site PAR, and Joint

Research Center (JRC) SeaWiFS faPAR

LUECyclopes light use efficiency calculated from site GPP, site PAR, and

Cyclopes faPAR

LUE modelled from vegetation indices, general scheme*

LUEPRIX, Y
LUE modelled from regression between PRIX (i.e. with reference

band X) and LUEY

LUE modelled from vegetation indices, example

LUEPRI1, SeaWiFS LUE modelled from regression between PRI1 and LUESeaWiFS

LUEPRI LUE modelled from regression between PRI and observed LUE

(summary term for multiple models)

LUENDVI, MODIS LUE modelled from regression between NDVI and LUEMODIS

LUE calculated using look-up table and site meteorology

LUEMOD17 LUE calculated from biome specific MOD17 parameters and site

Tmin, VPD

LUEMOD17, opt LUE calculated from optimised biome specific MOD17

parameters and site Tmin, VPD

4.2.3.2 Preparation of vegetation indices

The standard configuration of the PRI (Eq. 4.3) has to be adapted to the spectral

bands available on MODIS (Drolet et al., 2005). The MODIS band 11 is centred

at 531 nm (cf. Table 1.2). As the MODIS-sensor is not equipped with a spectral

band centred at 570 nm, we tested bands 1 (620–670 nm), 4 (545–565 nm), and 12

(546–556 nm) as potential reference bands, in accordance with the proposition of

Drolet et al. (2005, 2008). A modification of PRI has been computed from top-

of-atmosphere reflectances for each of the 4 reference bands, denoted by PRI1,

PRI4. PRI10, and PRI12. We compared the performance of the PRI as a proxy of

LUE against what can be achieved with a well known broadband vegetation index.

The NDVI is known to respond to changes in biomass, but also chlorophyll content

as well as leaf water stress (Myneni et al., 1995; Treitz and Howarth, 1999). The
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index is hence useful to see which part of the variation in LUE can be explained

already by factors other then changes in the composition of xanthophyll pigments.

We calculated the NDVI (Tucker, 1979) from reflectance data:

NDVI =
ρNIR − ρred
ρNIR + ρred

=
ρbd2 − ρbd1
ρbd2 + ρbd1

(4.5)

4.2.3.3 Empirical PRI-based LUE models

Exponential relationships between observed LUE (LUEMODIS, LUESeaWiFS,

LUECyclopes) and PRI were explored with Bayesian hierarchical models. Models

were established separately for each version of PRI with data binned as follows:

• observations from all evergreen sites combined (i.e. FR-Pue, IT-Cpz, US-

Me2; separate models for NDVI, PRI1, PRI2. PRI10 and PRI12),

• observations from the two evergreen broad-leaved sites combined (i.e. FR-

Pue, IT-Cpz; also separate models for each vegetation index),

• one site specific model (for sensor viewing zenith angles ≤ 40◦), this results

in five models per vegetation index,

• separate bins for each range of viewing zenith angles (0–10◦, 10–20◦, 20–

30◦, 30–40◦) for each site, this results in 20 models per vegetation index.

Results for all those viewing angle bins are listed in the appendix. In the following

we will only show outcomes for the complete range of viewing angles and near-

nadir observations (0–10◦). The variance explained with models fitted to the other

bins lies in between those two. Table 4.2 gives an overview of how observed and

modelled light use efficiencies are denoted in this study.

4.2.4 LUE modelled from Tmin, VPD and plant functional type

For benchmarking the performance of vegetation index-based LUE proxies, we

also calculated the LUE in the way it is operationally used in the MODIS GPP al-

gorithm (Heinsch et al., 2003). In this approach, a biome-specific maximum light

use efficiency is reduced by a vapour pressure deficit scalar and a minimum tem-

perature scalar. These attenuation scalars are calculated from daily daylight VPD

and Tmin based on linear ramp functions, the parameters of which are contained

in the biome property look-up table (BPLUT).

LUEMOD17 = LUEmax, BLUT × f(VPD)× f (Tmin) (4.6)

We computed LUEMOD17 using the standard MOD17 parameters and

LUEMOD17.opt using parameters that have been optimised per site and year by

Enrico Tomelleri (see section on LUE models in the Supplement of Beer et al.,

2010).
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Fig. 4.2: Comparing daily and half-hourly light use efficiency (based on MODIS faPAR)

for all the cloud free times where MODIS PRI is available. The times of MODIS overpass

are given in the upper right corner of each

panel.

As this study is concerned with the site level, we use for both LUEMOD17 and

LUEMOD17.opt site measurements of VPD and Tmin from the Fluxnet LaThuile data

set instead of the 1◦ by 1.25◦ NASA Data Assimilation Office (DAO) data routinely

fed into the MODIS GPP algorithm.This way we also exclude uncertainties in the

DAO meteorology as an additional source of error.

4.3 Results

4.3.1 Are LUEs at times of MODIS overpass representative for the
whole day?

The MODIS sensors operate sun-synchronous, i.e. images are only acquired

within a certain window of local time (morning through midday on the Terra plat-

form, midday through afternoon on the Aqua satellite). As a first step in our anal-

ysis, we checked if the LUE at time of satellite overpass is representative for the

whole day. For the five sites in this study, half-hourly LUEMODIS during the time

of MODIS overpass can explain 65% (ZA-Kru) through 92% (FR-Pue) of the vari-

ability in daily LUEMODIS (c.f. Fig. 4.2). The slope of the regression line between

half-hourly and daily LUE for ZA-Kru has the strongest deviation from the 1:1 line.

Midday LUE at ZA-Kru is lower compared to other sites, while LUE in the late af-

ternoon and evening is on average higher than at the other sites (c.f. Fig. 4.4).

This might be due to differences in moisture limitation. The atmospheric mois-

ture demand increases during middays stronger than at the other study sites (c.f.

Fig. 4.3).

The relationship between halfhourly and daily LUE remains the same when using

other faPAR products. This justifies the use of PRI “snapshots” to estimate daily

LUE.
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Fig. 4.3: Average diurnal course of vapour pressure deficit (VPD) at the study sites.

4.3.2 Which MODIS-PRI version suits which setting?

In the next step of our analysis, we only use LUEMODIS to evaluate the different

modelled LUEs and to figure out which PRI configuration is most useful for which

site. Afterwards, the effect of using different faPAR products is scrutinised using

only the best suited PRI reference bands.

As an example for the relationship between PRI and LUE, Fig. 4.5 shows PRI1 and

LUEMODIS for all five studies sites as well as for the combined evergreen and oak

models (c.f. Sect. 4.2.3.3). We chose exponential functions to avoid negative mod-

elled LUEs. The divergences between the fitted models become already apparent

in this example. Taking into account the known uncertainties introduced by flux

data processing—in this case by comparing two different flux partitioning methods

does not change this pattern (see Fig. 4.6 & section 2.1.2).

For all LUE modelled site-specific based on PRI and NDVI, the correspondence

with LUEMODIS is better for near-nadir observations than for all observations to-

gether (c.f. R2s in Fig. 4.7).

LUEMODIS can be modelled properly based on PRI for the savanna site ZA-Kru
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Fig. 4.4: Average diurnal course of light use efficiency (LUE) at the study sites.

(R2 for near nadir observations [R2
nadir] = 0.78, R2 for all observations [R2

all] = 0.49)

and for the deciduous broad-leaved forest site US-MMS (R2
nadir = 0.71, R2

all = 0.46).

LUEMODIS can be reasonably well modelled for the two evergreen oak forest sites

(FR-Pue: R2
nadir = 0.57, R2

all = 0.45; IT-Cpz: R2
nadir = 0.43, R2

all = 0.44). The mod-

elling of LUEMODIS for the evergreen needle-leaved forest US-Me2 is less suc-

cessful using PRI (R2
nadir = 0.37, R2

all = 0.2, see also the table in the Supplement).

The optimal reference band for the PRI differs between sites. For three sites with

completely different characteristics, LUEPRI1, MODIS with a site-specific model ex-

plains most of the variability in daily LUEMODIS (ZA-Kru, FR-Pue, US-MMS). PRI4
is most suitable for modelling LUE at IT-Cpz. LUEPRI12, MODIS works best at the

US-Me2 site.

4.3.3 Can LUE estimation from MODIS-PRI be generalised?

Ideally, a model of light use efficiency would be parameterised once for all possible

cases, or for well defined categories, and could then be applied to other location

in the same range of environmental conditions. When applying the model that
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Fig. 4.6: Corresponds to Fig. 4.5. The error bars represent twice the mean difference in

LUE between partitioning based on nighttime or daytime data (c.f. section 2.1.2).

has been established for the pooled evergreen-site observations at site level, the

correspondence with observed LUE values is low (c.f. Figs. 4.5b, 4.7, 4.8) as it

can be expected for sites of different plant functional type and location. Even when

parameterising a model for the two evergreen broad-leaved forest sites with the

same dominant species, the explained variability is low.

4.3.4 How does LUE modelled from MODIS-PRI compare to other
LUE models?

Of course, estimating LUE from PRI would not be justified if the same or a better

accuracy can be achieved with models/data that are already operational.
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LUENDVI, MODIS resulted only for the two sites with high deciduousness in a slightly

better agreement with observed LUE: for near-nadir observations in ZA-Kru, and

when using all observations in US-MMS. The differences in R2 to the best LUEPRI

are only 0.03% and 0.2% (c.f. Fig. 4.7, Table in the Supplement).

For the sites we have studied, LUEMOD17 has in every setting much less agreement

with observations than LUEPRI. LUEMOD17, opt. performs much better, though not

superior to LUEPRI except at FR-Pue with MODIS viewing angles ranging from

0–40◦. The agreement between LUEMOD17.opt and the reference LUE increases

slightly (without changing any of the statements above) when using faPAR from

MODIS collection 4 instead of 5 to calculate LUEMOD17 because the MOD17 pa-

rameters have been optimised based on collection 4 data (not shown). Note that,

while benchmarking with LUEMOD17 and LUEMOD17.opt provides an additional point

of reference, the main evaluation is performed with in-situ LUE.

4.3.5 Which influence does the choice of an faPAR product have on
PRI evaluation?

For the deciduous forest site (US-Me2), the choice of faPAR product does not

influence the relationship between observed and modelled LUE. The temporal dy-

namics of both the MODIS and SeaWiFS faPAR are very similar, Cyclopes faPAR

is not available for this site.

The strongest faPAR induced difference in fit between models and observations

occurs at the deciduous broad-leaved US-MMS forest. There, using MODIS faPAR

results in the best fit. Cyclopes faPAR for US-MMS shows a too gradual decrease

in autumn/winter and a too early (but at the same time too slow) increase in spring.

In contrast, the SeaWiFS faPAR seems to have too steep increases and decreases

and the beginning and end of the growing seasons (data not shown).
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In contrast with the other two faPAR products, Cyclopes faPAR at the ZA-Kru sa-

vanna site has a lower amplitude and does not seem to track the beginning and

end of the growing season properly (concluded from comparing faPAR and GPP

time series, data not shown). This might be the reason of the poor agreement

between model and observation for the Cyclopes based LUE. SeaWiFS faPAR

captures the length of the growing season for this savanna site well, which might

be the reason for the higher agreement when using this faPAR product.

At the FR-Pue evergreen oak forest, both the MODIS and the SeaWiFS faPAR

product show hardly any seasonality. This is probably why, despite MODIS faPAR

having higher absolute values, choosing one or the other faPAR product has no

influence on model fit. Cyclopes faPAR for the FR-Pue site has higher values in

winter. The model fit is worse when LUE is based on Cyclopes faPAR.

At the other evergreen oak forest, IT-Cpz, using SeaWiFS faPAR instead of the

other faPAR products to calculate in-situ LUE results in a higher agreement with
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Fig. 4.10: Scatterplots with R2 of faPAR from different products (Black: MODIS – M),

Red: SeaWiFS – S, Blue: Cyclopes – C) vs. PRI with site-specific most suitable reference

band. Significance codes: p value ≤0.001: ∗ ∗ ∗; p value ≤0.01:∗∗
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Fig. 4.11: Top: Time series of observed LUE as 14-day moving average (based on

MODIS faPAR) and modelled LUEs (exponential model based on PRI with reference

band 1, MOD17, and optimised MOD17) at the FR-Pue site. Bottom: Water deficit in mm

(calculated from field capacity and in-situ soil water content measurements).

LUEPRI (c.f. Fig. 4.8). A reason might be that the MODIS faPAR algorithm de-

pends on proper biome classification and biome-specific canopy structures and

soil patterns (McCallum et al., 2010).

4.3.6 Influence of vegetation structure on the PRI signal

For the deciduous sites (ZA-Kru and US-MMS), the MODIS photochemical re-

flectance index can be estimated from faPAR (see Fig. 4.10). The intra-annual

changes in MODIS PRI are related to the temporal dynamics of total leaf area.

The fraction of PAR absorbed by the vegetation at the evergreen sites shows little

seasonal variation compared to the changes in PRI. Thus, for these sites the

changes in PRI cannot be explained by variation in faPAR. This suggests that

the changes in PRI in those evergreen sites are more a result of changes in leaf

pigment composition rather than structural changes.
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Fig. 4.12: Top: Time series of observed LUE as 14-day moving average (based on

SeaWiFS faPAR) and modelled LUEs (exponential model based on PRI with reference

band 4, MOD17, and optimised MOD17) at the IT-Cpz site. Bottom: Water deficit in mm

(calculated from water balance).

4.3.7 Sensitivity of the different modelled LUEs to seasonal and in-
terannual variability

The modelling approaches detailed in this study (c.f. Sects. 4.2.3.3, 4.2.4) differ

in how well they are capable of reproducing annual and interannual variations in

LUE.

At the evergreen oak site FR-Pue, LUEPRI1 does capture the seasonal dynamics,

including the decline in LUE during summer drought, but not the interannual vari-

ability (c.f. Fig. 4.11). The observed LUE decline in summer is more pronounced

during the 2003 heat wave, while the LUEPRI1 amplitude is similar to other years.

LUEMOD17 is less capable of capturing the summer depression than the PRI based

model. LUEMOD17.opt reproduces the minimum of summer depression well, but the

modelled summer depression is much longer than observed.

At the other evergreen oak site, IT-Cpz, no distinct interannual variability is ob-

served. The seasonal cycle is captured well by LUEPRI4 (c.f. Fig. 4.12). Depending

on the faPAR product used for the in-situ LUE, LUE is severely over- or underes-

timated by LUEMOD17, the seasonal cycle is not well reproduced. LUEMOD17.opt

shows a dampened seasonal cycle and in general underestimates LUE.

At US-MMS the time series has gaps during cloud cover in winter time, but there

are still enough observations and PRI data to estimate the annual minimum in

LUE. There is a peak in observed LUE in summer 2002 that is not reproduced

by LUEPRI1 , otherwise the seasonality is tracked well (not shown). LUEMOD17

does not match the LUE observations in spring and autumn, while LUEMOD17.opt

underestimates the LUE peak in summer.

The evergreen needle-leaf site (US-Me2) possesses a low seasonal variability

of LUE. The small fluctuations that are observed are neither well simulated by
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LUEPRI, nor by LUEMOD17 or LUEMOD17.opt (not shown).

The short LUE time series of the savanna site is mimicked well by the PRI model,

apart from an overestimation in 2002 and some missed nuances (not shown).

LUEMOD17 and LUEMOD17 values underestimate LUE observations, except for the

southern-hemisphere winter in 2002, when the observed LUE is low compared to

other years.

4.4 Discussion and conclusions

We conclude that in general estimating LUE at site-level based on PRI reduces

uncertainty compared to the other approaches we tested. There is only one set

of LUE observations which can be slightly better approximated by an LUE model

based on VPD and Tmin than by LUEPRI: the 0–40◦ viewing zenith angle FR-

PUE data (c.f. Figs. 4.7, 4.8). Note that this LUE is not derived from the standard

MOD17 parameters, but from parameters that have been optimised per site and

year. This indicates that, at site level, MODIS-based PRI is very competitive as a

proxy for light use efficiency.

It is apparent that fine-tuning maximum light use efficiency as well as the VPD

and Tmin parameters improves the performance of MOD17 type models of LUE

(and ultimately GPP). However, our results support the growing body of evidence

suggesting that Tmin and VPD alone are not sufficient to characterise temporal

LUE (and hence GPP) dynamics due to i.e. drought stress (Kanniah et al., 2009b;

Maselli et al., 2009; Garbulsky et al., 2010). Soil water availability determines

stomatal conductance (Rambal et al., 2003) and hence productivity to a large ex-

tent and must be considered in LUE models that constrain a maximum LUE with

environmental variables. Soil water estimates are difficult to obtain over larger re-

gions. Estimates derived from remote sensing data are still poor, especially for

forests (Guglielmetti et al., 2008). Surrogates of soil water content based on evap-

otranspiration and precipitation could be a viable alternative Leuning et al. (2005);

Coops et al. (2007). Remotely sensed indices of vegetation water content such

as the land surface water index (Xiao et al., 2005) or surface temperature might

also help to obtain the seasonal variations of LUE in models that determine pho-

tosynthetic efficiency from environmental stresses (Hilker et al., 2008b). For these

approaches, constraints due to different image acquisition geometries must also

be considered.

For the South-African savanna site and the humid subtropical deciduous broad-

leafed forest (US-MMS), the accuracy of LUE modelled from NDVI is comparable

to that of LUEPRI. At both sites, vegetation greenness and faPAR (as well as leaf

area) are intrinsically linked to CO2 exchange. Hence NDVI and faPAR display

similar seasonal dynamics as light use efficiency (Garbulsky et al., 2011). The

PRI signal in general is influenced both by changes in vegetation structure and

by changes in pigment composition. Unsurprisingly, the gain in accuracy through

using PRI instead of NDVI or faPAR is highest for evergreen sites where changes in
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LUE are largely unrelated to greenness and changes in leaf area simply because

there is little change in greenness over time while LUE varies significantly (see

also Running and Nemani, 1988; Gamon et al., 1992; Garbulsky et al., 2011).

Despite the advantages of using PRI to estimate LUE at site-level, we found no

universally applicable light use efficiency model based on MODIS PRI. Models

that are optimised for a pool of data from several sites do not perform well.

Plant functional type, even dominant species is not a sufficient criterion to gener-

alise PRI based models. The two sites that are dominated by Quercus ilex, FR-Pue

and IT-Cpz, seem to have a very different spectral response at comparable LUE

levels since their optimal reference bands are 1 (red) and 4 (green). The different

behaviour at IT-Cpz might be brought about by a different stand structure, as for

example manifested in a higher LAI (c.f. Table 4.1), as well as higher ground water

levels due to the closeness of the sea and hence less water stress (Valentini et al.,

1992).

The optimal reference bands we determined (MODIS bands 1, 4, 12) fall within the

spectral regions identified by Middleton et al. (2009); Cheng et al. (2009) as useful

PRI reference wavelengths in a study on foliar LUE in a Douglas fir stand. Mid-

dleton et al. (2009) also showed that a PRI based on the relatively broad spectral

bands of MODIS (10 nm) correlates well with PRI values derived from 3 nm wide

bands. The results of our analysis suggest that the usability of different reference

wavelength might depend on species composition and stand structure. The first

study on PRI by Gamon et al. (1992) pointed out that no single reference wave-

length suited all purposes equally well (e.g. tracking LUE in unstressed and water

stressed sunflowers). The review by Garbulsky et al. (2011) points out that the

optical properties of the canopy are influenced – apart from species and environ-

mental conditions – by the fraction of dead and woody biomass, vegetation density

and spectral properties of the soil, all of which can affect the suitability of reference

bands. The present study adds to the body of knowledge showing that 570 nm is

not the only reference bands suitable for PRI. A data base encompassing more

sites with a diversity of functional and structural traits would be desirable to arrive

at a final conclusion in this regard.

In summary, when calibrated at site level a model based on MODIS PRI gives

better or at least as good estimates of ecosystem light use efficiency as the other

approaches we tested. In this study, an universally applicable model relating LUE

to MODIS PRI across different sites could not be found.





CHAPTER 5

Outlook

To increase the amount of data useful for a parameter estimation, it would be

helpful to include more heterogeneous sites in future analysis. A footprint clima-

tology assessment such as described by Chen et al. (2009) in combination with

multi-angular high spectral resolution measurements (Hilker et al., 2008a) would

be valuable for optimising model parameters in these cases. The impact of the

sun’s position on the PRI-LUE relationships in this study should be limited by the

similar data acquisition times (c.f. Fig. 4.2). Nevertheless, a follow on-study should

consider the sensor angle relative to the position of the sun to obtain certainty on

the influence of the image acquisition geometry on the PRI-LUE relationship.

Using only PRI values for near-nadir satellite observations does improve the accu-

racy of LUE predictions compared to using the whole range of viewing angles, or

observations binned in off-nadir 10◦ wide bands of viewing zenith angle. In a boreal

setting, modelling LUE only based on PRI derived from backscatter reflectance

also explained LUEobs variance better than when using observations combined

(Drolet et al., 2005, 2008). This is an indirect way of tackling the dependence

of reflectance on viewing geometry. When looking from different angles, different

fractions of e.g. tree canopy, understorey/grass, and soil will be visible to the sen-

sor and result in a variation of surface reflection. Excluding off-nadir observations

reduces this effect. For example, the validity of the more densely vegetated and

homogeneous FR-Pue site is less effected by viewing angle then the savanna site

where the contribution of trees to the signal by MODIS is more dependent on view-

ing angle. Another reason why near nadir data might have a better correspondence

with in-situ LUE is a smaller atmospheric effect on PRI/NDVI due to the shorter

Earth surface-satellite distance at small viewing zenith angles. The drawback of

excluding part of the data is of course that the temporal coverage might become

inadequate. Hilker et al. (2009) found that most of the directional effects on the

LUE-PRI relationship can be attributed to atmospheric scattering. The standard

single orbit algorithms such as 6S (Vermote et al., 1997) cannot compensate for

this atmospheric disturbance. MAIAC, a generic aerosol-surface retrieval algorithm

recently developed for MODIS (Lyapustin and Wang, 2009) showed promising re-

sults for detecting subtle changes in narrow waveband indices such as PRI (Hilker

et al., 2009).

Another promising approach seems to be the consideration of shadow fraction

in PRI-based estimations of PRI. Ground-based pilot studies have been very

successful in doing so (Hall et al., 2008; Hilker et al., 2009). The fraction of

shaded/sunlit parts of the canopy has an important influence on the light use effi-
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ciency of vegetation and not just the PRI signal. However, which fraction of sunlit

leaves is seen by a satellite depends on the position of the sensor relative to the

canopy and the sun as well as the canopy structure. If the vegetation structure is

not well known, uncertainty remains whether changes in PRI are due to a differ-

ent position of the sensor or due to actual changes in LUE. For space-borne PRI

studies, multi-angular acquisitions, taken within a short time period in which LUE

is constant, are necessary (Coops et al., 2010).

Future research directions to improve the knowledge on PRI could include the de-

velopment of physically-based models that predict reflectance changes at 531 nm.

Innovations in this regard must allow leaf optical properties to vary with leaf-level

illumination conditions and base the computation of reflectance changes on down-

regulation of photosynthesis (Coops et al., 2010).
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NPP net primary productivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

PAR photochemically active radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

PPFD photosynthetic photon flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

PRI photochemical reflectance index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Ra autotrophic respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Reco total ecosystem respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Rg global radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Rh heterotrophic respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Rn net radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RuBP Ribulose-1,5-bisphosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

RUE radiation use efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Rubisco ribulose-bisphosphate carboxylase-oxygenase. . . . . . . . . . . . . . . . . . . . . . . .4

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SPOT Satellite Pour l’Observation de la Terre

sPRI scaled photochemical reflectance index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Tmin minimum daily temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

u* friction velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

UMD University of Maryland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

VI vegetation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

VPD vapour pressure deficit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

WUE water use efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12





APPENDIX A

Appendix

A.1 MOD17 GPP model

Tab. A.1: The biome property look-up table (BPLUT) for MOD17 collection 5 (Heinsch

et al., 2003)

Biome type Parameter

LUEmax Tminmin Tminmax VPDmin VPDmax

(kg C MJ−1) (◦C) (◦C) (Pa) (Pa)

Evergreen needle forest 0.001008 -8.0 8.31 650 2500

Evergreen broadleaf forest 001159 -8.0 9.09 1100 3900

Deciduous needle forest 0.001103 -8.0 10.44 650 3100

Deciduous broadleaf forest 0.001044 -8.0 7.94 650 2500

Mixed forest 0.001116 -8.0 8.5 650 2500

Grassy woodland 0.000800 -8.0 11.39 930 3100

Wooded grassland 0.000768 -8.0 11.39 650 3100

Closed shrubland 0.000888 -8.0 8.61 650 3100

Open shrubland 0.000774 -8.0 8.80 650 3600

Grass 0.000680 -8.0 12.02 650 3500

Crop 0.000680 -8.0 12.02 650 4100

A.2 LUE modelled from PRI
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Zusammenfassung

Die Erforschung des globalen Kohlenstoffkreislaufs ist Teil der Bestrebungen, das

Erdsystem einschließlich der Wechselwirkungen zwischen seinen Komponenten

Atmosphäre, Biosphäre, Hydrosphäre und Geosphäre zu verstehen. Aufgrund der

deutlichen Beinflussung des Kohlenstoffkreislaufes - und indirekt anderer Stoff-

und Energieflüsse - durch menschliche Aktivitäten ist das Interesse an diesem

Wissenschaftsfeld nicht nur akademischer Natur.

Gesicherte Erkenntnisse über die Funktionsweise des globalen Kohlenstoffkreis-

laufes können nur durch die geschickte und möglichst vielseitige Kombinationen

von Erdsystemmodellen mit Messungen erzielt werden. Ein wichtiger Teilbereich

sind hierbei Modelle der Primärproduktivität, also der Assimilierung von Kohlen-

stoff durch die Vegetation, denn dies ist die wichtigste Senke von CO2 abgesehen

von (auf anderen Zeitskalen relevanten) geologischen Vorgängen.

Ein guter Teil der diagnostischen Modelle, welche die aktuelle Produktivität der

Vegetation quantifizieren, basieren auf dem Konzept der Lichtausnutzungsef-

fizienz (light use efficiency, LUE): die von den Pflanzen absorbierte Lichtenergie

wird mit einem bestimmten Wirkungsgrad in chemische Energie umgewandelt. Die

Lichtausnutzungseffizienz hängt vom Vegetationstyp, biotischen und abiotischen

Standortbedingungen ab. In globalen Modellen wird LUE häufig abstrahiert, indem

eine (eventuell biom-spezifische) maximale Lichtausnutzungseffizienz festgelegt

wird, aus der die tatsächliche LUE als Funktion leicht zu quantifizierender Umwelt-

faktoren ermittelt wird. Im Fall des operativ betriebenen MOD17-Models der

Nettoprimärproduktion sind die limitierenden Faktoren die Tagesminimumtemper-

atur und das Sättigungsdefizit von Wasserdampf in der Atmosphäre. Schwächen

dieses Models sind strukturelle Defizite, z.B. die ungenügende Berücksichtigung

des Bodenwassergehaltes, und durch die Verwendung globaler meteorologis-

cher Datensätze bedingte Ungenauigkeiten. Diese Schwierigkeiten machen sich

besonders für immergrüne Vegetation unter Trockenstress bemerkbar, wenn die

photosynthetische Aktivität trotz relativ konstanter Lichtabsorbtion stark sinkt.

Der Photochemische Reflexionsindex (photochemical reflectance index, PRI) hat

sich in zahlreichen Studien an einzelnen Blättern bis hin zur Ökosystemebene

als Schätzer der Lichtausnutzungseffizient bewährt und ist daher auch für glob-

ale Produktivitätsmodelle als Alternative zur Berechnung der photosynthetischen

Effizienz aus meteorologischen Daten und einem fixen Maximalwert interessant.

Der spektrale Index nutzt aus, dass eine Verringerung der photosynthetischen Ef-

fizienz mit einem veränderten Reflexionsverhalten im Bereich um 531 nm einher

geht. Dieses Signal wird durch die in einem von diesen Mechanismen nicht bee-

influssten Spektralbereich gemessene Reflexion normalisiert. Bisher wurde noch

kein Model veröffentlicht, das aus satellitengestützen PRI-Messungen Lichtaus-

nutzungseffizenz allgemeingültig für mehrere funktionelle Pflanzentypen und Kli-

mazonen berechnet.



In dieser Arbeit wurde an mehreren Standorten mit zeitweiligem Trockenstress un-

tersucht, welches PRI-Referenzband und welcher Aufnahmewinkel sich am besten

für die Ableitung der Lichtausnutzungseffizienz auf Ökosystemebene eignet.

Die Anwendbarkeit einer Vielzahl von denkbaren Produktivitätsmodelen auf der

Grundlage von MODIS-PRI wurde für verschiedenartige funktionelle Pflanzen-

typen mit unterschiedlichen Vegetationsdichten geprüft. Eine Kernfrage der Ar-

beit ist, ob trotz bekannter Einschränkungen wie zum Beispiel der Abhängigkeit

des PRI von der Aufnahmegeometrie, mit vorhandenen Mitteln ein unter unter-

schiedlichen Bedingungen universell anwendbares PRI-basiertes Model der Lich-

tausnutzungseffizienz entwickelt werden kann. Diese von PRI abgeleitete LUE

wurde mit der Lichtausnutzungseffizienz aus dem konventionellen MOD17-Modell

und der LUE aus einem mit lokalen Meteorologischen Daten optimierten MOD17-

Modell verglichen.

Es wurde außerdem betrachtet, welchen Einfluss die Wahl verschiedener fern-

erkundlicher faPAR-Produkte auf die als Referenz verwendete in-situ Lichtaus-

nutzungseffizienz hat. faPAR (d.h. der relative Anteil absorbierter photosyn-

thetisch aktiver Strahlung) ist zur Berechnung der insgesamt von der Vegetation

absorbierten Energie unabdingbar und beeinflusst daher die gesamte Evaluierung.

Ein Ergebnis der vorliegenden Arbeit ist, dass ein für einzelne Standorte kalibri-

ertes PRI-gestützes Produktivitätsmodell genauer ist als das mit lokal gemessenen

meteorologischen Daten betriebene MOD17-Modell. Es konnte jedoch kein PRI-

LUE-Modell gefunden werden, dass für mehrere Standorte Gültigkeit hat. Neben

den Modelparametern unterscheiden sich auch die jeweils best-geeigneten Ref-

erenzbänder zwischen verschiedenen Standorten. Somit kann der lokal erzielte

Genauigkeitsgewinn nicht für größere und damit heterogeneres Gebiete genutzt

werden.

Diese Arbeit stellt durch den methodischen Vergleich zahlreicher Einflussfaktoren

einen wertvollen Beitrag zur fernerkundlichen Messung der Lichtausnutzungsef-

fizienz und damit zur Verbesserung von globalen Modellen der Ökosystemproduk-

tivität dar.
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